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Computation of the MHD equilibrium of a tokamak plasma is reviewed as comprehen-
sively as possible. The basic equation of this problem is the Grad--Shafranov equation.
General remarks on this equation and related issues are, first, summarized with historicai
survey of the MHD equilibrinom solution, where some mathematical discussions on the
numerical analysis of the problem are also presented. Distinguishing features of this problem
arc seen in treatment of the boundary condition and constraining conditions and we describe
them in a rather detailed manner. In the main part of this review paper we present a concrete
description on the numerical procedures of the MHD equilibrium solvers which are classified
into two groups, that is, the real space solvers and the inverse equilibrium solvers. We also
describe topics on more general equilibrium models, that is, the equilibrium with steady flow,.
anisotropic equilibria, equilibria with specified current sources, and equilibrium evolution.
Brief comments on three-dimensional equilibrium solvers are also presented. As for applica-
tion of the MHD equilibrium solvers we present only a small part, that is, beta limit optimiza-
tion, design of external coils, analysis of positional instability, and analysis of experimentalily
obtained data from electromagnetic measurement. It is concluded that among various kinds
of numerical solution methods we can usually find most adequate ones for the present
problem.  © 1991 Academic Press, Inc.
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1. INTRODUCTION

As the first candidate of the fusion reactor many tokamak-type devices [ 1-3] are
being studied extensively. With the fusion devices becoming larger and more com-
plicated and also with more detailed experiments being carried out needs for further
quantiative analyses are increased. Consequently, the role of computations in the
field of the tokamak fusion research becomes very large [4-6]. In various kinds of
computation the solution of an MHD equilibrium equation of a toroidal plasma
(the Grad-Shafranov equation) [7,8] is necessary frequently and plays a
fundamental role. There are a variety of MHD equilibrium codes developed
depending on different applications.

One of the engineering applications of the MHD equilibrium solvers is to
calculate the external magnetic field and to design an external magnetic field coil
system by giving a set of plasma parameters and geometrical parameters. Here the
determination of a configuration of external conductors is the aim, and only global
or averaged equilibrium quantities such as the total plasma current and averaged
pressure are necessary. In such cases the requirement for accuracy of ‘the equi-
librium calculation is not usually so stringent but inteiligibility of a numerical code
is considered to be more essential. In applications for experimental analyses a
plasma equilibrium is conjectured from a limited number of parameters and the
results are utilized for further analyses of the plasma behavior. In this case a unique
correspondence between the experimentally observed data and the input data for
the numerical calculation is desirable. On the other hand, in theoretical analysis
extremely high resolution is required and a wide range of variation of the
parameters is usually considered. If one uses the equilibrium solution for the linear
MHD stability analyses derivatives of various quantities such as current density
and magnetic field should be obtained with a very high accuracy. A high accuracy
calculation is pursued by using a special numerical scheme or by increasing the
mesh number. Usually, however, in the stability calculation only the information
inside the plasma is important and the concrete configuration of external coil
system consistent with engineering requirements is not important.

The above description is for a scalar pressure equilibrium without a plasma flow.
However, tensor pressure (anisotropic pressure) and flow of a plasma should, some-
times, be taken into account for the equilibrium analysis of an intensely heated
plasma. In the above-described “conventional” equilibrium codes the plasma
current distribution is given somewhat arbitrarily and consistency between the
current distribution and a transport process is not assured generally. Therefore, an
equilibrium code with self-consistently determined current distribution, and an
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equilibrium evolution code made of a combination of a two-dimensional egu:-
librium code and a one-dimensional tokamak transport code are important for
experimental and theoretical analyses. Though the tokamak plasma is esse ii
axisymmetric, the three-dimensional feature becomes important sometimes.
dimensional codes developed for non-axisyrametric systems are useful for :.hes::
purposes.

In this article we review the MHD equilibriumn computation of a tokamak
plasma as comprehensively as possible. We are mainly concerned with numerical
schemes and algorithms for solving the Grad-Shafranov equation developed for th
various applications. The general MHD theory which the problems in this articl
are based on are described in Refs. [9-157. In Section 2 we summarize :Jmps.r’{
of the MHD equilibrium of a tokamak plasma and some general remarks necessar ATy
for the computation of the equilibrium. We also give a briel description of
approximate methods for the Grad-Shafranov equation based on the inverse aspect
ratio expansion and some mathematical remarks on the equation. In Sectior 3, we
discuss the boundary conditions and the constraining conditions imposed on the
Grad-Shafranov equation. Here two main algorithms developed to sclve the
Grad-Shafranov equation for a tokamak plasma are described, te., the noniinear
gigenvalue method and the FCT {(flux conserving tokamak) algorithm. Section 4 is
the core of this review article. We describe numerical methods developed zo far for
solving the Grad-Shafranov equation, which are classified intc two groups, ie. the
real space solution methods and the inverse equilibrium methods. In this section we
also describe a numerical method to construct a {lux coordinate syster from a
numerically computed equilibrium (numerical mapping). A numericai Lﬁuhuiqdﬁ
concerning the use of a vector processor to solve the Grad-Shafranov equafiaﬁ s
also mentioned. Section 5 is devoted to more general equilibrium models. These are
equilibria with anisotropic pressure or flow, an equilibrium with sdf—cor!s stent
given current sources, and equilibrium evolution. Comments on the three-dimen-
sional equilibrium solvers are also given in this section. In Section & we describ
applications of the equilibrium solvers from various viewpoints. In this section
we describe beta limit optimization, determination of external magnetic Iieids.
positional instability analyses, and determination of tokamak equilibria fic
experimentally obtained electromagnetic signals. Section 7 gives a summary and 4
discussion.
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2. GENERAL REMARKS ON TOKAMAK EGQUILIBRIUM

2.1. Historical Survey of MHD Equilibrium Solution

As described later in detail, the basic equation cf the axisymmetric toroidal egui-
librium is the second-order elliptic partial differential equation of the magnetic flux
function . This equation was derived independently by Grad [16], Shafranov
{177, and Schliiter [18], and it is called the Grad-Shafranov equation or iae
Grad-Schliter—Shafranov equation. Throughout this review article we call it the
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Grad-Shafranov equation. The right-hand side of the Grad-Shafranov equation
represents the plasma current and if it is a linear function of  or constant, one can
obtain an exact analytical solution of the equation [19-21]; otherwise one should
rely on approximate solutions derived by some kind of expansion or on numerical
solutions described in this article. In the early stage of the tokamak research,
analytical equilbria were studied extensively. Many works in this stage are still
important as the basis of the inverse equilibrium solvers which became powerful
means to analyze the three-dimensional equilibrium as well as the two-dimensional
one in 1980s. In this category of the analytical solutions two different approaches
were generally taken. One is based on the expansion of metrics by the plasma
radius (the near-axis expansion) [22-24] and the other is based on the expansion
of the solution ¥ by the inverse aspect ratio ¢ (defined in 2.5). The latter approach
is further subdivided into the method based on the low beta tokamak ordering
[25-271, and the method based on the high beta tokamak ordering [12, 15,
28-307].

Though several numerical equilibrium codes for other types of devices [31] were
developed earlier, a numerical equilibrium code for the analysis of a tokamak
plasma was first published by Callen and Dory [32]. This code solves a fixed
boundary equilibrium of a tokamak with a circular cross section by using the FDM
(finite difference method) on the (7, z) rectangular mesh and the SOR (successive
overrelaxation) algorithm. Throughout the 1970s various numerical methods were
developed, investigated, and applied to various numerical equilibrium codes to
solve the Grad—Shafranov equation [7, 33-38]. Among them the nonlinear cigen-
value method [7, 37], the semi-fixed boundary method [7, 38], employing the least
square fitting of the plasma surface [7] played crucial roles in the subsequent
progress of the equilibrium analyses. The efficient solvers based on the DCR
(double cyclic reduction) method and the FACR (Fourier analysis cyclic reduction)
method described later were made realizable by application of these methods.
Numerical schemes, such as the FDM and the FEM (finite element method), the
Green’s function method, and the expansion method were also applied to develop
equilibrium solvers. As for the algorithms to solve the resulting matrix equations
from the FDM discretization, initially the iterative methods such as the SOR and
the ADI (alternative direction implicit iteration) method [31] were favourably
employed. Before the nonlinear eigenvalue method was established, combination of
the ADI and the Marder—Weitzner’s three-step iteration method [34] was one of
the most useful solution methods [39] to cope with the nonlinearity arising from
the free-boundary equilibrium problem. Afterward, with the progress of the com-
puter system, the direct method became more favourable and solvers based on the
cyclic reduction methods become standard. Recently, however, iterative methods
such as the MGM (multi-grid method) are again being used because they are
generally more favourable than the direct method for parallel processors. Equi-
librium codes based on the Green’s function method, in which the Green’s function
of the Grad-Shafranov operator is directly integrated, were also developed
[40,41]. This method is simple an intelligible. However, as it takes much
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computing time in comparison with other more efficient codes and there is 2
difficulty associated with the inherent singularity, the code is not used widely at
present. Application of the toroidal multipolar expansion to the MHD equilibrium
solvers was proposed by Feneberg and Lackner [36] and several codes were
developed [42,43]. But they could not become widely used codes, too. The FEM
equilibrium solvers are less efficient than the FDM solvers but they seem useful for
some special purposes such as the analyses of the flow equilibria [44, 45]. And
mathematically strict analysis of the solution method itseif is carried out concerning
the FEM solvers. The conformal mapping method developed by Goedbloed {447
is not also the widely used one but it is still useful for some stability problems
because of its mathematical sophistication.

In parallel with the development of the above-described real space equilibrium
solvers, studies of the inverse equilibrium solutions advantagecus for the subse-
quent processing based on the flux coordinate system and for the analysis of the
three-dimensional equilibria have been continued. Because usual MHD stability
codes are developed on the flux coordinate system mapping procedure is required
by which various quantities are mapped from the {r, =) space to the (i, y) space in
the flux coordinate system where y is a poloidal angle. The equilibrium soiution
given by the inverse equilibrium solver is, therefore. directly used for such stability
analyses. Several types of the inverse equilibrium solvers, ie., the iterative metric
methods, the direct inverse solution methods, and the methods of expansion in
poloidal angle, were developed [47-517. But at present the numerical codes based
on the methods of expansion in poloidal angle [50] are used most widely among
them for various purposes. This method was used also to develop an efficient
compact equilibrium solver run on a small personal compuier [52].

With the progress of the tokamak research interest in the high beta tokamak
equilibria was increased in order to realize an efficient fusion reactor. Corre-
spondingly, the FCT concept was proposed and the FCT equilibrium was studied
extensively by many authors [53-567]. Clarke and Sigmar {547 derived several
fundamental relations among the equilibrium quantities in the high beta region by
solving the integral relation for the circular cross sectional tokamak with a bigh
aspect ratio under the FCT condition. This resuit was extended by Mizoguchi et 4.
to include the case of the equilibrium with the elliptical cross section [55]. Dory
and Peng {53] formulated the numerical procedure to solve the Grad—Shafranov
equation under the FCT condition and obtained numerically equilibria with very
high beta value as about 30%. Several issues concerning the boundary conditions
of the FCT equilibrium were discussed by Nelson [57] and Albert [58]. Spies
showed that the entropy density (adiabatic pressure} u is more appropriately used
for the expression of the FCT condition rather than the pressure p [56]. Owing to
these basic studies it became easy to solve the high beta tokamak equilibrium by
the FCT algorithm, and afterward the FCT equilibrium solvers play main roles in
the stability analyses of a high beta tokamak [59, 607, analyses of the adiabatic
compression [58], and equilibrium analyses subject to resistive diffusion [&17.
Typical numerical procedures are summarized in Table I
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TABLE I

Summary of Numerical Procedures for Equilibrium Solution

Issues Authors Other references

a. Basic Contributions

Derivation of the H. Grad and H. Rubin [16], [91]
Grad-Shafranov equation V. D. Shafranov [17],
R. Liist and A. Schliiter [18]
Low beta tokamak ordering J. M. Greene er al. [27] [25, 26]
and inverse equilibrium
High beta tokamak ordering H. R. Strauss [28], F. A. Hass [29] [12, 15, 30]
Nonlinear eigenvalue formulation K. Lackner [7] [37. 48, 93-96, 98-101]

FCT concept
FCT algorithm

J.F. Clarke and D. J. Sigmar [54] [55]
R. A. Dory and Y.-K. M. Peng [53] [56-61]

Algorithms

Authors Remarks Other references

ADI + three-step
iteration
FDM + SOR

FDM + MGM
FDM + DCR

FEM

Iterative metric
method

Direct inverse
method

Expansion in
poloidal angle

Green’s function
method

Expansion with
orthogonal
functions

Conformal

mapping method

b. Real Space Solvers

B. Marder and Free boundary, [391
H. Weitzner [34] old method
J. D. Callen and Fixed boundary [31, 104-106]
R. A. Dory [32]
B.J. Braams [112] [107-110]
J. L. Johnson et al. [38] Semi-fixed boundary with [7, 124]
least square fitting
S. Semenzato et al. [44], Equilibrium with flow [48, 85, 86]

W. Kerner and O. Jandl [45]

c. Inverse Equilibrium Solvers

J. DeLucia er al. [49] [48]
P. N. Vabishchevich [51]
etal [47]
L.L. Lao etal [50] Variational moment [52, 123, 180-183]

method, 3D equilibrium

d. Other Solvers
H. Ninomiya et al. [40] Simple, inefficient [41]

S. Seki et al. [42],
F. Alladio et al. [43]

J. P. Goedbloed [46] Use of fast
Hilbert transform
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2.2. Grad-Shafranov Equation and Magnetic Flux Function

The basic equations of the ideal MHD equilibrium of a plasma with scalar
pressure and without flow are

Vp=JxB, i2.i
VXB=yu,d. (2.7
V-B=0, 12.3%

where J and B are the current density and magnetic flux density. respectively, and
io is the magnetic permeability of the vacuum. Throughout this review ariicie, we
adopt SI units unless otherwise specified. For an axisymmetric system such as a
tckamak plasma we can define a magnetic flux function ¢ from the toroidal compo-
nent of vector potential A4, as

Y= —rd,. 24y

By using this single scalar function ¢ in a cylindrical coordinate system {.z, $:
{Fig. 2.1 the magnetic field B is represented by

B=V¢xVy+ FVy. (75

where toroidal field function (poloidal current function} F is expressed by using the
toroidal field B, as

F=rB,. (2.6}
Then the set of the equilibrium equations, Eqgs. (2.1)-(2.3), is reduced to a second-
order partial differential equation called Grad-Shafranov equation [16-18] as
A2 A A2
PEVINLE JLLL A S 27

o2 v or 022

g, r) = oty

Fic 2.1. A cylindrical coordinate system {r. z, ¢,) used for the equilibrium calculation.
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FiG. 2.2. Region for the equilibrium calculation. Q,: plasma, @, : vacuum, [,: plasma-vacuum
boundary, I': computational boudnary.

where the toroidal component of the plasma current J; is given by

J¢=—r@—i5d—F. (2.9)
d  pordy

The above Grad-Shafranov equation is solved in a two-dimensional region as
shown in Fig. 2.2, where Q,, Q,, I',, and I" denote the plasma region, vacuum
region, plasma—vacuum surface, and the computational boundary.

It is easily seen that the pressure function p and toroidal field function F are func-
tions of only . The magnetic flux function { has an ambiguity of shift of constant
value and, hereafter, we define the y value at the plasma surface to be zero; inside

the surface the value of the magnetic flux function is negative unless otherwise

'y
\

/
(a) (b) (c)

Fic. 2.3. Classification of the equilibria according to topology of magnetic surfaces. (a) Separatrix
magnetic surface is located outside the plasma. (b) Separatrix magnetic surface coincides the plasma
surface. (c) Separatrix magnetic surface is located inside the plasma surface.
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remarked. In the case of an axisymmetric toroidal equilibrium the structure of
nested magnetic surfaces is clearly defined by the contours of the magnetic flux
function . From the practical viewpoint of equilibrium computation the structures
of the magnetic surfaces are classified topologically into three groups as shown in
Fig. 2.3. In the case (a), the separatrix magnetic surface is outside the plasma region
and the magnetic surfaces inside the plasma region are nested tori made of simply
connected contours of the magnetic flux function. There is oniy one elliptic singular
point of the magnetic flux function inside the plasma region, which is called a
magnetic axis. When the separatrix magnetic surface coincides with the plasma
surface we call it the case (b) equilibrium. In this case hyperbolic singularities
{X-points) appear on the plasma surface and multiplet plasma equilibrium with
several magnetic axes may be observed. This kind of configuration is also found in
a divertor tokamak. From the viewpoint of numerical calculation difficulty may be
found because some metric quantities diverge at the X-point on the separatrix and
usually stability calculation is carried out by assuming the plasma surface is located
just inside the separatrix. If the separatrix magnetic surfaces exist inside the plasma
region it is classified as the case (c) equilibrium. Ir this case there may appear
several magnetic axes and magnetic islands inside the plasma region. An exampic
of this type is an equilibrium of the doublet tokamaks [627.

in this article we mainly describe the case (a) equilibrium. It should be noted that
a finite toroidal current inside the plasma region is needed to realize the above equi-
libria as the following integral of the poloidal magnetic field strength B, yields a
finite value, »

[N
]

i ,
1,,=i—l;§v3pdz.

In other words the above axisymmetrically nested magnetic surfaces cannot be
realized by the current flowing in external coils alone. Plasma current or current 1
internal conductors is necessary for the above axisymmetric toroidal equilibria as in
the case of a tokamak and an RFP [63] or in the case of a multipole [647, a
levitron [65]. and a spherator [66], respectively.

2.3. Flux Coordinate Svstem

Plasma behaviors along the magnetic surfaces and across them are extremely
different. It is, therefore, desirable or, sometimes, inevitable to employ a flux coor-
dinate system {10, 11] based on the contours of the magnetic flux function ic
analyze instabilities or transport. In the previously described case {a) equilibrium
the Y contours have a topologically same structure with concentric circles and a
flux coordinate system similar to a toroidal coordinate system is easily defined.

In this article we adopt a flux coordinate system (¥, 8, #), where ¢ is the toroidal
angle defined in a real space and 8 is an arbitrarily chosen poloidal angle {Fig. 2.4
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(a) {b)

Fic. 24. A flux coordinate system (i, 0) used for the stability calculation: (a) An example of the
coordinate system with straight field lines; and (b) an example of the coordinate system with constant
arc length is presented. In both coordinate systems the coordinate in the toroidal direction is the usual
toroidal angle.

In general this system is a nonorthogonal coordinate system and the line element
is given as

dl?= Euy ay’ + 2840 A dO + gop do* + E4s de?, (2.11)
2 2 2

fw=T V0 gm0, gw=L VR gu=r Q1)

=[(VyxV8)-Vg] . (2.13)

Because 0 is the angular coordinate with modulus of 2rn the following constraint is
imposed to the Jacobian ¢,

dl
=2r. (2.14
7B, )

By choosing an appropriate ¢ we can specify a coordinate system. For example,
the coordinate system with straight field lines,

a0 F 1
Z) = 2.15
(@l)l,, qrzBp, ( )

which is often adopted for stability analyses is constructed by choosing a Jacobian
as

’.2
f=;q(l//), (2.16)
where the safety factor ¢(y) is defined as

r’B, T 2n

F§dl Fjgdl

‘I(l//)Eﬂ = TVl

(2.17)
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Any quantity expressed as a function of only a magnetic surface label (such as the
safety factor, the poloidal/toroidal magnetic flux functions, flux surface averages in
the next subsection) is called a surface quantity.

2.4. Flux Surface Average

The flux surface average (X) of a variable X is defined as

K e 2 X 7 db (X/B,) di

Xy= 1 Xdv=2 T P i LS R T
o= tim 271, ”JO (dVd¥) ”hdrcra'sv) (o)
v - dl

A =1 ® — 2.18
7P ZnJO S db _ng})BP, (2.18)

where V{¥) is a volume inside a magnetic surface specified by an arbiirarily chosen
label ¥, such as, the poloidal magnetic flux y={B-V0dV/(2n)’, the toroidal
magnetic flux y=|B-Vg$dV/(2r)?, and so on. In the following we adopt the
poloidal flux coordinate ¢ as the magnetic surface label unless otherwise specified.
it is needless to say that a surface quantity itself is also a label of a magnetic
surface. Many important quantities appearing in the MHD stability analyses
[67, 68] and transport analyses [69] are represented by the flux surface average.
In the following we describe two important expressions derived by using the surface
averaged quantities.

First, we describe the parallel component of the plasma current and discuss
the consequence of the quasi-neutral condition. The quasi-neutral conditicn is
expressed as

divJ =0, 12.20)
where
B N
J=JL+J||E, (2213
B xVp
J, = . (2225
L B_v_ i

As 8B/00+#0 in general, the divergence of the perpendicuiar current has a finite
value, which means that the parallel component of the current always exists in an
axisymmetric toroidal equilibrium. If we rewrite the expression for the current J as

J=KB+J,Vg,

224y
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with the coefficient K being a function of only ¢ and for the case of a scalar
pressure it is represented as

1 dr
Ky)=———. 225
W)=~ (225)

After some manipulations the parallel current J, is derived as

_Efiﬁ(l_ B’ )+<J-B>
Bdy\" (B)" (B

= B (2.26)

The current of the first term of this equation is the well-known Pfirsch-Schliiter
current which maintains the quasi-neutral condition. This current originates from
the charge separation due to the toroidicity. The divergence-free current of the
second term assures the momentum balance along the magnetic lines of force and
it is essential for confining the tokamak plasma.

The second example of the flux surface average is the surface averaged
Grad-Shafranov equation, which is important in relation with the FCT algorithm
[53] and the equilibrium evolution. By averaging the Grad-Shafranov equation on
the magnetic surface we obtain the equation

1 d/dv  , \N_ d_p_ d_F
dvf/dlpE(g.; <Bp>>— ko gy~ F g A (227)
where
/AN (2 A4 g

After integrating the equation with respect to y we again average it over the whole
volume, and obtain the equation

- v V) daF oy A [ (dV/dp){B,>
ﬁp_1+jw Ty VJ{ZFde+<Bp>dw[ln——V——’;]}d¢, (2.29)

where the suffix s denotes the values at the plasma surface and the poloidal beta §,
is defined as

1 ¢ pdV

B[JEZHOFJJ <B}27>5

(2.30)

From Eq. (2.29) it is shown that dF/dys <0 (paramagnetic) corresponds to f§,<1
and dF/dys > 0 (diamagnetic) corresponds to §,> 1, because the second term of the
integrand is a small quantity.
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2.5. Quantities Characterizing a Tokamak Equilibrium

in this section we summarize the quantities characterizing a tokamak plasma and
ranges of values of these parameters. First, several geometrical parameters shouid
be mentioned. Because the tokamak plasma is of toroidal shape there are major
radius R, and minor radius a which characterize the size of the torus. Inverse aspect
ratio ¢ is defined as

f=m (231

Usually the value of the aspect ratio ¢ ' is larger than 3 for a tokamak but some-
times a very [at tokamak with a low aspect ratio as ¢ ~' = 2 is considered. An earlier
tokamak has a plasma cross section of a circular shape bur a noncircular cross
sectional tokamak is preferred because higher plasma current and higher beta value
are attainable. For such a tokamak an ellipticity x and a triangularity é of the
plasma cross section are defined as shown in Fig. 2.5. The following definition of the
noncircularity is also widely used:

r=R,+acos(f—ésin 28), (232}
z=~xasin 6. {2333

When the eliipticity « is very large the plasma suffers from the vertical positional
instability (see 6.2) and the range of the ellipticity is usuaily between 1 and
approximately 2.

The value of the safety factor defined by Eq. (2.17), ¢, {flux ¢), is known oy
after the equilibrium is solved. Therefore a simpler definition of the safety factor, 4,
{current ¢) is often employed for the purpose of rough calcuiation of experimental
analyses and design of a tokamak device. The current safety factor ¢, is defined as

_ B, 1 ma*{l1+«x7)
~ Ro o i

14

t2
w

4,

5

a— 2 —s=

Ka

RO r
F1G. 2.5. Definition of the geometrical parameters of a plasma cross section: x, ellipticity: &,
trizngularity.

33193 1-2



14 TAKEDA AND TOKUDA

where B,, is the toroidal magnetic field at the plasma center R,. Practically, in
addition to this definition, several kinds of different expressions for the current

safety factor are defined as

_2a’B, 535
q“—ROIp(MA)’ (2.35)
_ 2ka’B, 536
qu___ROIp(MA)’ (2.36)
where
a=./Dfr, (2.37)
1 2
k= +2", (2.38)

and D is the area of the cross section. It should be noted that the difference between
the flux ¢ and current ¢ becomes considerably large when the cross section is
shaped too much and/or the beta value becomes large (Fig. 2.6). The safety factor
was originally defined as a margin to the stability limit observed at ¢, =1 in an
early circular tokamak (Kruskal-Shafranov limit) [17, 70]. But tokamaks are
rarely operated in the parameter range with such a low value of the safety factor.
Low g discharge with ¢ <2 is very difficult because of strong external kink mode
instability. Usual experiments are carried out between g=~2 and g~ 5 or 6.

4
e *]
L g-psi
R g-J1
g ................... g-J2
é T q-J

Ellipticity K
FiG. 2.6. Various definitions of the safety factor, q,, q,, g,,, and q,,.
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A beta value is defined as a ratio of the plasma pressure to the magnetic pressure.
In addition to the poloidal beta defined by Eq.(2.30), beta vaiues f,. current
poloidal beta value f,, are defined, where two different definition of the current
poioidal betas, f,, and §,, are presented, as

2ue p
B.= . 2.35;
B,
4o PV, .
B, =—b0l7s (2.40)
Ro[#olp]"
and
Ba= Zu,o,p, (2.4
5
where
__ b 7 A
pEI7J pdV, 242)
. (ln
B,=pol, | di {2.43)

Under the constant plasma current condition the maximum poloidal beta velue is
limited [3, 327 as

effi, < L. 12.44)

To characterize the current profile of “normalized internal inductance per umit
length” /, is defined as

4 B
=——s— | =24V (2.43)
toll,)* Ro ¥ 2ug

The following several parameters are also often used for stability analyses, 1.2,
shear, S, mean radius of the magnetic surface, p, local poloidal beta, =, and average
parallel current I,

S= =—— (246}

©
i
o
Ul <
=
(]
e
[
~1

__ﬁ;d_pip_’ o (2.48)
2n dy difp \ 27°Ry’
I _{J-B)_ F @_lﬂ: 12.49)
I v

T (B (B ugdy
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2.6. Integral Relation

In this section some useful relations [71, 727 among integrals of the equilibrium
magnetic field, plasma current, plasma pressure, and another arbitrary vector are
derived. First the equilibrium magnetic field is decomposed into two parts, B, and
B,, as

B=B,+B,, (2.50)
where

rot B, =puyJ, (2.51)

rot B,=0. (2.52)

It should be noted that this decomposition is not unique. Next we consider the
following vector identity which holds for arbitrarily chosen vectors, Q and A, as

Q[rotAxA]:div[(Q A)A——Q] A—de A[(A-V)Q]. (2.53)

By letting A equal B, and using Eq. (2.1} we obtain an integral of the above
equation over the volume, including the plasma volume, as

| {(p+3—2> div Q —— B, [(B, -V)Q]} v
v 2p Ho

1 —[Q-UxByyav.  (254)

~§[(r+2) Q-as-~ @-B.B. as)|-

Ho Ho
This equation is called the integral relation [73]. As one of the examples of applica-
tion of the integral relation, the following virial theorem is derived from the
previous vector identity by letting B,=0 and Q=r=re, +ze_,

. BZ N B2
J (3p+—>dV=§> [—rdS——(B r)(B- dS)] (2.55)
v 2uo s L 2u0 H

where e, and e_ are the unit vectors in the r- and z-directions, respectively, .S is an
arbitrarily chosen surface located outside of the plasma surface where p=0. When
the magnetic field B is generated only by the plasma current it scales as B oc 1/r°
in the distance, which means the right-hand side of the equation vanishes in the dis-
tance. In this way we can get an important conclusion that the plasma equilibrium
is only attainable in the existence of external magnetic field.

From Eq. (2.54) we can derive two important relations which are used to express
macroscopic parameters of a confined plasma by a set of experimentally measurable
quantities. To obtain the first relation we decompose the magnetic field B into the
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poloidal and the toroidal components as B=B, + B,, and carry out the integration
of the virial theorem (Eq. (2.55)) at the plasma surface. Then the equation

[N
L
N

. B> B*-B? r B2
J <3p+—&+———>gﬂ/= L dS 563
v 2u 21 s 20

is derived, where B,, is the toroidal magnetic field at the plasma surface. Gn the
other hand, by letting Q =e, in Eq. (2.54), the second relation is derived as

2o 2u, e) W= :#S l-_,“&er “* -

9
in
~d

-1 B. B;—B;
(e
v ¥

where the pressure at the plasma surface is assumed as p =0. Expressing the plasma

surface as r=Rqe,+pe, in the quasi-cylindrical coordinates (p.w, ¢) system
{Fig. 2.7}, and defining the current beta, §,, and the diamagnetic parameter z; 23

B:=B1s {2.58}
4 — B’

Uy = dV =4rR,B, AP, {2.5%)

d #o(lp)zRoJ 2/10 oo .

where A® is the increment of the toroidal magnetic flux, we can transform these
relations to the form convenient for the experimental analysis as

BJ:#.I+SI+5RSZ* {

N
[#
2

ﬁ,+ 1_ > S, +SaK1

) |>a
\__/
~
to
5N
o

F1G. 2.7. A quasi-cylindrical coordinate system (p. @, ¢}.
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In the above equations S, and S, are expressed by the integrals at the plasma
surface as

2 1B
= —_— —£ )
1 Ilol,z,Ro 2Mopepa’s, (2.62)
2 1 B
Sy=— — 2 "
, ﬂoI,Z,R0§2 e, ds (2.63)
where
N RO_RT .
§p= 21 (2.64)
R RO
RTEf]dV/fJ;dV, (2.65)
B B —B
= A S
7 =pHg i (2.66)

and for a usual tokamak, & is sufficiently small in comparison with unity. When
the plasma cross section is circular and the inverse aspect ratio ¢ is sufficiently
small, S, becomes nearly unity and Eq. (2.61) becomes the well-known Shafranov’s
equilibrium relation [9, 74]. Equations (2.60) and (2.61) are used for determination
of B, from the experimentally obtained electromagnetic signals, and usually the
current beta, f,, determined from Eq. (2.60) is called the “diamagnetic” current
beta (f4?) and that determined from Egq.(2.61) is called “MHD” current beta
( BMHP), To calculate these betas, identification of the position of the plasma surface
and measurement of poloidal magnetic field at the surface, diamagnetic flux, and

the internal inductance are necessary. These issues will be described in 6.3 in detail.

2.7. Approximation of the Grad-Shafranov Equation

In this subsection we describe two representative approximate solution methods
used for calculation of the tokamak equilibrium, ie., the low beta tokamak
ordering and the high beta tokamak ordering. Other approximations based on,
such as, the near-axis expansion [22-24] were preferably applied to analytical
solution of the equilibrium in the early stage of the tokamak research but, with the
progress of computer systems and computational techniques, large-scale numerical
solutions have been substituted for the analytical solutions. By employing the
inverse aspect ratio, ¢, as the expansion parameter we normalize the magnetic flux
function, ¥, coordinates, r and z, the pressure function, p, and the toroidal field
function, F, as

2

B
l/,:"a“)sv, O<P<), (2.67)
r=Ry(1 +ex), z= Ryey, (2.68)

p=¢&"BJP(¥),  F>=(R,B,)’ [1+¢"F(¥)], (2.69)
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where « is a parameter relating to the magnetic flux function at the plasma surface,
B, is the typical value of the toroidal magnetic field, and the following ordering of
the magnetic field is considered:

4 S
rB,=|Vy| x (2,70}
B,x¢B,. (270

By using the above-described normalized quantities the original Grad-Shafrancy
equation is rewritten as

e oV dG dP)
4, ¥9— — =" T {— S ex(2+ex)——3, {272
- 1 +ex éx ve {d‘[’ ex2 e )d‘P’) ‘
where
¢t @l
AL 117= P =+ 3 W; ’l\: 73
cx” 6}’_/
dG_dP+ldF (2.74)
AP~ d¥ " 2d¥ Y
Then we expand the normalized coordinates x and v as
x=x(V, ) =xNY, 0y +ex (T )+ -, (2.75;
y= (¥, 0=y, )+ ey P 01+ -, {278}

In order that the equilibrium equation (Eq. (2.72)} is satisfied in each order of ¢,
the following two cases of n =2 (low beta tokamak ordering) and n=1 (high beta
tokamak ordering) are possible.

(1) Low beta tokamak ordering [27, 75]. In this case the beta value, 5, and
the poloidal beta value, f,, are O(¢’) and O(e°), respectively, and the following
equations hold for the orders of ¢° and ¢!, in the respective order:

, dG
AJ_W_ —O{"ﬁl, 12.77)
, dP GLANE
A, )= — x5O . {2.78)
(4. ¥) X v < ix { J

Toroidal effect is not included in the equation of O(e°) (Eq. (2.77)) and the first
term of Eq. (2.78) represents the toroidal shift arising from the finite-f effect. The
second term represents the toroidal shift due to the self-force of the plasma current.
Above equations (Eqgs. (2.77) and (2.78)) can be solved only numerically except {or
special cases such as an equilibrium of a circular cross-sectional tokamak.
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(2) High beta tokamak ordering [28, 29]. In this case B and &f, are
quantities of O(e') and O(e®), respectively, and we expand the current function
dG/d¥ as

d_G — @ 82 dGz +
v CawTaw T

(2.79)

from which the following equation is derived:
F?=(RyBy)* {1 —2e[P(P)— P(1)]+2°[G(¥)—G()] + ---}.  (2.80)

By using the above expansion, the following equations valid up to the first order
of ¢ are obtained:

,d dpP
A, ¥P= —a‘-c—i%—Zazx‘o’d—W, (2.81)
O\ dG s , dP
(4, '1”)(1)=<%,> —OC'EI%—OC"(X(O))“ ;l’?l (2.82)

Equation (2.81) includes only a toroidal effect due to the plasma pressure and coin-
cides with Eq. (2.77) in the limit of null beta. Though by the tokamak ordering a
slightly simpler equation (Eq. (2.81)) is derived in comparison with the original
Grad-Shafranov equation, analytical solutions can be obtained only for the func-
tions dG,/d¥ and dP/d¥ with linear dependence on ¥, and numerical calculation
is necessary for other cases.

2.8. Mathematical Remarks on the Grad-Shafranov Equation

In this section we summarize some basic remarks on the mathematical aspects of
the Grad-Shafranov equation, which are closely related to numerical solutions of
the equation. From the mathematical viewpoint the distinctive feature of the MHD
equilibrium problem is that this problem is often formulated as a nonlinear eigen-
value problem with a free boundary condition. The mathematical issues to be
clarified for such a problem are to prove existence and uniqueness of the solution
and the error estimation of a numerical solution method. Among them, existence of
the solution was proved by Temam [767] and Berestychi and Brézis [77] on the
basis of the variational approach [78, 79] and by Kikuchi [80], Rappaz [81], and
Kikuchi et al. [82] on the basis of the principle of contraction mappings [83].

Existence of the equilibrium solution for a rather general case was proved
by Temam [76]. In this case the equilibrium problem is formulated in R?
(x=(x,, x,) & R?) as

Lu=Jf(u, x) in Q,, (2.83)
Lu=0 in Q,, (2.84)
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=0 on [, {2.85}

u=d on I {2.86]
~ 18

j—ldr=1, (287
x,0n

where the normal derivative of u, du/cn, is continuous on /,, ¢ is an unknown
constant, / is a given constant representing the plasma current, the variable u
corresponds to the flux function ¢ with a positive value in the plasma region {2,
and does not vanish in Q,, Flu, x)=bl{x)u (0<b,<b{x)<b,; by and b, are
appropriately chosen constants), and

2 4 (18
Luzd*uzza< ”). (288)

ot X, O0x;

For this problem, the plasma region @, and eigenvalue / as well as the dependent
variable # = u(x) are to be determined. The operator L is not necessarily restricted
to the above form and in general it is an arbitrary second-order seif-adjoint elliptic
operator. If the function f(u, x) is given as b(x)u, we can set d=1 without losing
generality. Then the original problem can be reduced to the problem of finding the
critical point of the functional,

17 1 , ‘
kl(u)zg’ — |Vu|? dx, (2.89)
V40 Xy
with the constraint
b , .
kz(u)zj = [+ 1) ] dx=const, (2.90)
O«

where u satisfies u=0 on I, u_ =max(—u, 0), and 1 is the corresponding critical
value. Temam showed that k,(u) is bounded from the lower side and existence of
the critical point of the functional k() is proved by using the weak lower semi-
continuity of &,(«) [84]. For a more general form of the function f as

. dglu, :

flu, )= 282X (291)
cu

f(x,0)=0, f(x,u)>0, for u>0, (2823

existence of the equilibrium solution is also proved by using the same variational
method, provided the function f is bounded from both the upper and lower sides

as

b (Jul® — 1)< flu, x) <b,{jul P+ 1}, 12.93)

with f> 1, b,, b,>0. Existence of the solution to the problem treated in 4.1.2 is
assured by the above proof.



22 TAKEDA AND TOKUDA

On the other hand, Kikuchi proved both existence and uniqueness of the equi-
librium solution by considering a concrete procedure for application to the FEM
formulation. In the following we summarize the results heuristically for a cylindrical
tokamak equilibrium with f(#)=u, = max(x, 0). First, the problem is formulated
as finding a pair of {4, u} which satisfies the following nonlinear eigenvalue
problem in R?,

—Adu=if(u) in Q, (2.94)
u=—1 on [I. (2.95)
It should be noted that the trivial solution of this problem is u(x)= — 1, where the

eigenvalue A is arbitrary. Next, instead of solving the above problem directly we
consider solving the following fixed-boundary problem, that is, finding a pair
{40, ¢} of the linear eigenvalue problem,

—A¢=A¢ in Q, (2.96)
¢=0 on [I. (2.97)
There is one and only one solution of this problem which satisfies

(4,¢)=1 and  $(x)>0, (2.98)

and the corresponding eigenvalue 4, is simple and positive, where the inner product
of two functions, X and Y, is defined as

(X, Y)= J XY dS. (2.99)

Then, by considering a transformation,
u* =ceu, (2.100)

where ¢ is a small positive definite parameter, the original problem is reduced to

—Au*=Af(u*) in Q, (2.101)
u*=—¢ on I. (2.102)

Though we assumed that ¢ is positive definite the above equation is meaningful
even for £ <0. And if we set £ =0, u* = ¢ becomes a solution of the above equation.
Then, we solve the original equation starting from the solution of the linear eigen-
value problem ¢. The solution is expressed as

u*=¢+ e +w, (2.103)

(Y, 9)=0, (2.104)
(w, $)=0. (2.105)
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If we consider a neighborhood of {1, ¢}, u* and 4 can be expressed approximately
as ¢ + e and A, + ey with very small ¢ In this case the problem is reduced to find
a pair {u, ¥} which satisfies

—AY — Aoy = pg in £, (2.106}
y=—1 on I (7.107;

From the solvability condition, Eq. (2.104), the eigenvalue of g is given by
w=ro(1, ¢) {2108y

and the unique solution iy can be obtained from the above linear boundary
problem. The equation for w is given by

—Aw —Agw = Af(u*) — Aou* —edoll. Pid. {2.10%}
From the solvability condition, Eq. (2.105), the eigenvalue 4 is expressed as

*’ 17
,‘L:,:_OMM_ (l“(}}

(flu*), $)

A concrete iteration procedure to determine the solution as well as the preof of
convergence was given by Kikuchi er ol [82] as

(e 4) +e(L, 9)
(S =), ¢y

— A A = AOFG ) < At (1, 6. (2.12)

A0 =4,

This procedure can be directly applied to analysis of the solution by finite element
approximation [85, 867 as shown in 4.1.2.

3. BoUnDARY CONDITIONS AND CONSTRAINING CONDITIONS

3.1. Boundary Conditions and Vacuum Field

There are several possible ways to impose the boundary condition at the
plasma surface. From the practical viewpoint four types of treatments of the
plasma—vacuum boundary are considered (Fig. 3.1). The simplest is the fixed
boundary condition, where the plasma-vacuum boundary is replaced by a surface
of a perfect conductor. In this case the Grad-Shafranov equation is solved only in
the plasma region at first and the whole system including the vacuum region is
calculated, if necessary, on the basis of the virtual casing principle by Shafranov
and Zakharcv [87], in which the external magnetic field is calculated so that the
magnetic field is continuous at the surface [887]. Details of the procedure will be
described in 6.2 in relation to the design of the external magnetic field coils. The
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Fic. 3.1. Four types of treatment of the plasma-vacuum boundary: (a) fixed boundary problem;
(b)—(d) free boundary problems of types (1)}~3).

other three are free boundary treatments in some sense. In the first type of free
boundary problem, the shape of the plasma surface is not known beforehand and
the boundary values ¥ on I are given as was described in 2.8. In the second type
of free boundary problem, which is also called a semi-fixed boundary problem, the
approximate plasma shape is prescribed by giving several fixed points on I',. In the
third type of free boundary problem, the equilibrium is solved under the given
external magnetic field by imposing a constraint such as a fixed contact point of the
plasma with the limiter. These four types of boundary conditions are chosen in
correspondence with the applications.

For the first type of free boundary problem it is convenient to introduce a form
factor S(y) which unifies the plasma and vacuum equations for the plasma and
vacuum regions; the boundary condition on the plasma-vacuum interface is
automatically satisfied and, if only the boundary condition on the shell or at
infinity is given, the plasma shape is determined self-consistently. The unified
Grad—-Shafranov equation for the plasma and the vacuum regions is given as

A%y + S (A + M)y =0, (3.1)
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where

S(y)=1, for <O, insidethe plasma, (3.2}

4

S(y) =0, for >0, outside the plasma, {3.2)

4

and for simplicity p(y) and F?(i) are often expressed in terms of quadratic forms
of Y with constan: coefficients. The boundary condition on the conducting sheil
surface is

4

L

Y = C{const}, {

from the condition that the normal component of the magnetic field vanishes there.
As in present day tokamaks the role of the external control magnetic field is impor-
tant to maintain the MHD equilibrium in comparison with the conducting sheli,
this kind of equilibrium solver becomes less important, except for its interesting
mathematical properties as shown in 2.8.

Next we describe how to determine the external magnetic field for the secend
type of free boundary problem. In this type of free boundary treatment, the total
magnetic flux, ¥, ie., the sum of the flux due to the plasma contribution ¥, and
that of the vacuum contribution ., is determined iteratively by adjusting the
vacuum flux .. Moreover, in this type and also in the third type, the problem in
the original infinite computational domain is transformed into a Dirichlet boundary
value problem in a rectangular domain by using the Green's function of the
Grad-Shafranov operator 4* (the Green’s function formulation) [7, 37, 381. Ths

O O O O

Computational
Domain

O O O O O O O

Fixed Points

O O O O

External Coils

FIG. 3.2. A computational domain and fixed points for the seconc type free boundary problem.
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poloidal flux t,(ro, zo) produced by the plasma current j, at the point (r4, z,) on
the boundary of the computational domain (Fig. 3.2) is given by the Green’s
function formula as

Vi(r, z

| lﬂ(f, W

A . L
l//p(rO’ ZO)=_¢ G(I‘, Z; rOv ZO) ’ (35)
Ho “y=0 F

where Y(r, z) is composed of the magnetic fluxes due to the plasma current and the
external current as

Y(r z)=y,(r, 2) + ¥ ulr, 2). (3.6)

In the above equation, G(r, z; ro, z,) is the Green’s function of the Grad—Shafranov
operator given as

1 ,
G(r, z3 ro, 7) = — ;‘—7‘; oz [2—K) K(k) = 2E(0)], (3.7)
k2 4rro (3.8)

- (r+ro)+(z—24)%

where K(k) and E(k) are the first and the second complete elliptic integrals,
respectively. In this way the value of the magnetic flux i on the boundary of the
computational domain is given as

Y(ro, zo) = lpp(rO’ 20) + ¥ i lro, Zo)- (3.9)

For this process it is convenient to decompose the vacuum contribution i, into J
multipolar components 1/,

J—1 )
Yo=Y ayi, (3.10)

Jj=0

and the coefficients a;s are determined so that the i =0 contour contains the J
prescribed fixed points as

J—1

Yolrpz)+ ) a i (ry, z;)=0. (3.11)

j=0

The main advantage of this method is that the problem is reduced to a Dirichlet
boundary value problem in a rectangular computational domain, which can be
solved easily by applying rapid direct solvers such as the DCR (double cyclic reduc-
tion method) and the FACR (Fourier analysis cyclic reduction method), described
later. The basis functions of the multipolar components ¢]’s are derived by using
linear combinations of the vacuum solution represented by the associated Legendre
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FiG. 3.3. Flow diagram of the type-2 free boundary calculation.

functions. The flow diagram for this process is shown in Fig. 3.2. The conerete
forms of the multipole solution up to n=5 components are shown as

Po=1, {3.12)

1 1 2 2 (313

d"i/’z Roﬂ (’ _R()), 15,157
i 1

[P 222__ Z_RZ 2] (334

!P 4 {Roa)“ [’ 4 (’ 0) J? ]
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= — S(Rt)a)“ [1226 ——2 (3r*—2RZ) rz*
+%(rZ—Ré)zzz—%(rZ-Réf], (3.16)
3,=§(Rola)5 [rzzs—%(zﬂ—Rg)ri%%(z 2— R2)(r*— R2) riz*
e 0P Ry s 7 R’ (3.17)

This kind of expression becomes extremely complicated as the number of com-
ponents J increases. Therefore, magnetic fields by an appropriately chosen set of
coils are more easily used as the basis functions in the case of a tokamak with a
strongly shaped cross section. When the coil system is approximated by a set of fila-
ment currents the flux i, in the computational domain produced by a unit current
flowing in a coil at (r,, z.} is derived by solving the boundary value problem,

where

lpO(rO’ ZO):.uOG(r()’ZO;rcszc)' (320)

By this kind of boundary condition, the approximate plasma shape is prescribed as
a set of input parameters. Generally it is very convenient to analyze the plasma
properties for the given conditions and this boundary condition is preferred for
theoretical stability analyses. It should, however, be noted that this type of problem
is an ill-posed one and it is rather difficult to calculate an equilibrium with
an extremely shaped cross section or with a separatrix at the plasma surface. To
cope with this difficulty, modification of this method based on the least square
method is often effective [38]. In this method the coil current I;’s are obtained by
minimizing an appropriately chosen object function such as

N M j 2 M 2 M
S Z) 2 L (g, 2 I: I
E=Y w, Volrie 2+ 22 I (e 20) +y Yy L+2Y 24, (321)
k=1 lpaxis j=11p j:[Ip

where N and M are the number of fixed points and the number of independent coils
(usually N> M). The regularization parameter y is introduced to stabilize the
procedure against large unreal oscillations of the current I’s. The last term can be
used to constrain the total current in all the coils to zero.

On the other hand, the third type of free boundary problem often appears in an
actual experimental situation when one wishes to conjecture the realized equi-
librium for a given magnetic field and limiter position because the shape of the
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plasma cross section is not prescribed. In this type of boundary condition, however,
the standard iteration scheme fails to calculate the equilibrium when the constraint
is given by an outboard limiter [36]. During iterations the plasma expands or
shrinks infinitely in correspondence with the larger or smaller initial plasma radii
compared with the equilibrium one. To overcome this difficulty several ideas
[89,90] were proposed and successfully applied to actual problems. One of the
ideas to suppress this numerical instability is to stop the plasma movement by
applying a virtual magnetic field during the iteration and to bring the plasma into
a equilibrium state by decreasing the virtual field. The flow diagram of this
algorithm and an example of the convergence curve are shown in Figs. 3.4 and 3.5,
respectively [89].

3.2. Nonlinear Ligenvalue Problem

In general a careful treatment is required to solve the Grad-Shafranov equation
as it includes two differentiation operators V and d/dy defined in the two different
spaces [91]. For this purpose two kinds of formulations dependent on constraining
conditions are possible. One is the nonlinear eigenvalue problem in which the func-
tional forms of pressure p(i) and toroidal field function F(y) are prescribed and the
absolute value of them are determined from the eigenvalue of the system [7, 33].
The other is the flux conserving tokamak (FCT) equilibrium, where the problem is
formulated so that the magnetic flux ¢ is conserved and the safety factor profile
q(y) is also given [53, 56, 58, 59, 927. In this subsection we describe the formula-
tion of the nonlinear eigenvalue problem.

We rewrite the Grad—Shafranov equation (Eq. (2.7)), as the nonlinear eigenvalue
problem

A%y = Af(y, r), (3.22)
where
JW) = pord o= tord /A (3.23)

First, the above equation is solved with some appropriate numerical method and
eigenvalue 1 is obtained. In this calculation the variable range of ¥ is fixed as
[—1,0] in the plasma and the following iteration scheme is adopted:

(1) Prepare initial values, y°, 1%
n+1

(2) Solve the following equation for " ™",
!ﬂ'H—l:A*‘ll'y(lﬂ",i‘); (324)

(3) Normalize the y values by the value at the magnetic axis and obtain
(n+ 1)th eigenvalue A"*,
1

n+1
axis

/{n+l=

A% (3.25)

(4) Repeat the above iteration procedure.
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In the above calculation the range of the variable ¥ is restricted within [ — £, {]
and it is necessary to transform the variable into an appropriate range if the phys:-
cal quantities, such as the total plasma current, maximum plasma pressure, etc., are
to be adjusted to the prescribed values. For this purpose the following scaling of
equilibrium quantities is carried out:

X X . ar dF
=y, B,=0B, J,=oJ, p=c |[F=\=gF—,
=0y, ,=0B, s =0J4 p=0c"p, a\a,w) n o
) (5,203
S S &
Fo=F, 0" (FF=F,. ¢=4 7.

where the quantities with hats are new quantities and ¢ is the scaling factor. f cue
wishes to adjust the total plasma current with the prescribed current 7, the scaling

factor o is calculated as
N AN T .
o 1=<7>Jj J 0 dS. (2.27)

‘p

It is easily seen from Eq. (3.26) that there are several iteration processes equivalent
to the above one, e.g., an iteration under the constraint of constant current instead
of the constant range of the y variation adopted in the above iteration [367.

From a practical viewpoint the convergence of the above iteration procedure of
the nonlinear eigenvalue problem is very good and it is used widely for various
applications. Detailed mathematical discussions on this problem are given in
Ref. [93-96].

3.3. FCT Equilibrium and GDE

In contrast with the nonlinear eigenvalue approach, where the functional forms
of p{y) and F(y) are given beforehand, in the FCT equilibrium approach the safety
factor g(y) and adiabatic pressure u(y) defined in the following equation are given
to solve the Grad-Shafranov equation,

amy: ,
H(‘p):p(@) > {

\

L
[
eze)

where 7 is the ratio of specific heats. The FCT equilibrium was devised to atiain. a
higher beta state. As shown in Eq. (2.44) the maximum beta value of a tokamak
plasma is determined by an equilibrium beta limit when the pressure is raised under
the fixed plasma current condition. Shafranov [977] suggesied that the limit will be
overcome by appropriately adjusting the plasma current distribution, whick was
numerically demonstrated by Peng er al [92]. As the equilibrium beta limit
is imposed by the condition that the topological structure of the magnetic
surfaces should be conserved, a high beta tokamak equilibrium can be obtained by
calculating an equilibrium sequence with a constant g-profile, i.e.. with conserved
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toroidal and poloidal magnetic fluxes (FCT: flux conserving tokamak). By
assuming a high beta tokamak ordering for the equilibrium of this sequence some
asymptotic scaling laws among the normalized plasma current fp, total beta §,,
poloidal beta B,, current beta f,,, safety factor at the plasma surface gg, and
inverse aspect ratio ¢ are given [54] as

. ﬂ 1/3
2q51pz<?’ qf) + const, (3.29)

2/3
ef,~ (;’ qf) + const, (3.30)

ﬁ 13
B x <:’ qf) + const, (3.31)

h
where o . "

L=\ ") (3.32)

By a numerical solution without any assumption the above approximate scaling
laws are modified a little as shown in Fig. 3.6. There is a limit at B, ~ ¢ ~!, whereas
the total beta has no limit up to 8, =1 when the plasma pressure is raised in an
appropriate manner. Concrete expressions of the Grad-Shafranov equation for the
FCT equilibrium are derived as follows.

By using g, p, and V the Grad-Shafranov equation is rewritten as follows:

\ AN AN ) a.4d(ad
A"’Z_’Z[Zﬁ/(ﬁ) “(Iv) de}’16”4AdV<AdV>' 333)

The left-hand side of the equation has the elliptic partial differential operator for the
function (r, z) and the right-hand side has the second order ordinary differential
operator. This kind of equation is called the “generalized differential equation”
(GDE) [91]. There are various kinds of solution methods devised for the above
equation and the following method is convenient for solution of the equilibrium of
a tokamak plasma. First, we derive an equilibrium equation (Eq. (2.27)) by taking
an average of the Grad-Shafranov equation on a magnetic surface, and from this
equation the ordinary differential equation of F(y),

1 dF
Fa= P (3.34)

is obtained, where

' AK v EY—2
De v K+(A/27r)” ,uf"—z ’ (2.35)
VAK +yu(A2n) F' =+ A4
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vs4n2q (3.36)
Loepry 1 L [ g,at
K:FV<Bq>_q[§d1r |Vl//l][5hrd1|w|], (3.37)
T=4n L (3.38)
AV

and the dot denotes the differentiation with respect to . The present problem is to

solve this equation under the

¥ = const. It should be noted,

boundary condition, Y(¥V'=0)=0, and y(V="V,)=
however, that the magnetic surface ¥(r, z) should be

determined beforechand in order to perform the surface integrals contained in A and

Given q(y), p(y)

Initial guess of

Viy)
Yvy
e 4n’q
A@V/dy)
‘ Calculate
surface
Calculate D gquantities

v No
F‘:exp{-vf Ddy
e
=L | AF_4v check
v 47[2.‘0 q
o Vs o Solve
v \y(Vs)Wn Grad-Shafranov
equation

(Inner Loop)

Convergence
check

[

Yes

(Cuter Loop)

FiG. 3.7. Flow diagram for an FCT equilibrium solver.
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K. For this purpose Eq.(3.34) should be solved iteratively with the original
Grad-Shafranov equation as shown in the flow chart (Fig. 3.7). The above procs-
dure is used for solving the equilibrium inside the plasma. When the equilibrium is
extended to the vacuum region it should be noted that the toroidal magnefic field
strength increases at the plasma surface with raising the plasma pressure. As 2
natural consequence, skin current appears at the surface to cancel the jump of the
vacuum toroidal magnetic field, which is unrealistic, or to increase the plasma
volume and decrease the surface magnetic field (Fig 3.8). The incremen: of the
plasma volume obeys the following scaling law in the case of a circular cross-
sectional tokamak:

oV 1

—_— 11 3G
I/ 2B \,,,.)9,!

Therefore, the numerical procedure should be carefully constructed to remove this
skin current when one solves a free boundary equilibrium under the FCT condition.

0.04

0.03

dv/v

0.01

0.00 ———— ———— .
0.00 0.02 0.04 0.06 0.08 0.10

beta-t

Fic. 3.8. Increase of the plasma volume with raising the beta vaiue for a frez boundary FCT
calcuiaticn.
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4. NUMERICAL METHODS FOR INVERSION OF GRAD—SHAFRANOV OPERATOR

4.1. Real Space Solution Method
4.1.1. Finite Difference Method

A lot of equilibrium solvers have been developed on the basis of the finite dif-
ference method (FDM). Regular rectangular meshes with a five-points difference
formula are usually employed for the finite difference discretization of these equi-
librium solvers and the distinction of a solver is mainly displayed in the algorithms
to solve the resulting simultaneous linear equations rather than in the discretization
schemes. From this viewpoint we classify the FDM equilibrium solvers according
to the algorithms into those based on the direct methods and the iterative methods,
and we describe in detail the cyclic reduction methods and the multigrid method as
the representative algorithms of the direct methods and the iterative methods,
respectively.

(1) The direct solution method. In principle, various direct methods can be
used to develop equilibrium solvers with the finite difference discretization.
However, the cyclic reduction method overwhelmed other direct methods of the
FDM formalism and it became one of the standard algorithms for the MHD equi-
librium codes [38,98]. The reasons are: first, this is a very efficient algorithm;
second, a large memory space becomes available in a present-day computer; and
third, because of good feedback control of a tokamak plasma it is not always
necessary to solve a pure free boundary problem but it is sufficient, in many cases,
to solve a semi-fixed boundary problem to which the cyclic reduction method is
easily applicable. The cyclic reduction methods are described in a fairly detailed
manner by Hockney [997] and Christiansen and Hockney [1007]. Embodiment of
the cyclic reduction methods as the algorithms for the equilibrium solvers was
carried out by many authors [38, 98] on the basis of the double cyclic reduction
(DCR) method by Buneman [101] and the Fourier analysis cyclic reduction
(FACR) method by Hockney [99]. Although both the DCR and the FACR
algorithms were originally designed to invert the Laplacian, 4, efficiently, here
we give a detailed description of algorithms for inversion of the Grad—Shafranov
operator, A*.

We consider a rectangular mesh with constant spacing Ar in the r-direction and
Az in the z-direction. Each mesh point is labeled by the mesh numbers i=0, 1,
2,...M,and j=0, 1, 2, .., N, in the r- and z-directions, respectively, where M and
N are chosen as the power of 2, i.e, M =2" and N=2". It was a stringent con-
straint when one solved an equilibrium on a small computer but recently it is not
so serious because one can solve a large-scale problem by a large computer system.
The Grad-Shafranov equation (Eq. (2.7)) is discretized on this mesh by a five-
points formula as

wi—l.j~2¢i,j +l/ji+laj+_£lpi—l,j_¢i+l,j+¢i,j—~1_2¢i,j +¢i,j+1:g_ )
(4r)? r; 24r (Az)? hJ?

(4.1)
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where ¥, ; =V(r,, z;) and g, ; = g(r;, z;). In the following discussion we assume that
Y values at the boundary are given beforehand {the Dirichlet boundary condition!.
By introducing vectors, ¢/’s, defined as

l//f)‘j
¢ = al/:,-_,- , 4.2}
Vs,
the vector equations
¢ 1 —Bp;+d;..,=p, Jj=L..,M-1 {4.3}

are derived from Eq. (4.1), where B and p; are a tridiagonal matrix (M + 1) x (M + 1}
and a vector with (M + 1) elements, respectively, defined as

1 00 %
a B n 0
0o, B2

B= a; B ’ {44}

! L (4z)? _ 1 i
o, =(d4z)? s =2 —=+1| y,=04)——5—
%= }[{Ar)z_i_zridr} B |:{Ar)‘+ ] ri=t )[(Ar)z 2r, Ar |

4.5}
g?.j \

p; = (42)° g:,-., : (4.6
e/

By using the above representations we, next, consider the DCR algorithm.
Because the Grad-Shafranov operator is uniform in the z-direction as the usual
Laplacian and consequently the matrix B is independent of the index j, we can
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apply cyclically the odd/even reduction with respect to the index j. After / recuc-
tions the vector equations (Eq. (4.3)) are reduced to the equations

-1

¢y — B+, a=p. (&,

in the above equation the matrix B and the vector p!'' are given as

B =[BY" VP —2I=(B'" V= 2 [)BV+ 2 1), (e85
pj(./):p;l:z}_)l_i_B(/—up;/fl)_*_pﬁ:z}ll’ a9
¢/-:’:(B”))_l [¢j-2[+1:+_¢j_pj('[l2[]? {(4.10}
¢j+2’:(B(“)_l [¢j+¢j+2’+l“l’,(-l+jz"]s (4.1

where 7 is the (M +1)x(M+1) unit matrix. Finally, the vector egquations
(Eq. (4.7)) are reduced to a single vector equation as

¢0—B‘L)¢N}_+¢!\r=pf¢§£ (Llegz 1?\]‘"}:}1—1,35 (\4329
where
;| \
Yo,0 /Yo x N
¢0= l/’i,(} s ¢_,"\' = wlw\' (4E3;
Yaro \iﬁ.w. ,\',"’

are given as the boundary condition. The solution of Eq. (4.12) is derived as

¢N,'2: (B~ 1]~ [¢0+¢A\“P’}35“1 {

In the above equations it should be noted that the matrix BY' is not tridiagonal
although the initial matrix B‘© = B (Eq. (4.4)) is a tridiagonal matrix. However. the
final B-matrix, B” ™Y, as well as B"' in Eq. (4.11), is easily factorized as

14

>

BV V=(B—b INB+bI)--{B—bh, IMBE+b, I} {(4.15)

i

where each elementary matrix, B, — b1, is tridiagonal. Therefore, the simultaneous
linear equations (Eq. (4.14)) can be solved by n— 1 inversions of the tridiagonal
matrices, which is carried out by the one-dimensional cyclic reduction. In the case
of the Grad-Shafranov equation, however, off-diagonal elements of the above
elementary tridiagonal matrix are not constant and it is not so advantageous
to apply the cyclic reduction to the solution in the r-direction. Solutions of the
other vectors are synthesized by using Egs. (4.10) and (4.11). It shouid be noted
that, during the construction of the matrices, B'"’, overflow will occur. But it can
be overcome by changing the recurrence relation {Eg.{4.9)) to one that i3
algebraically equivalent, with multiplication by the inverse of the B'’-matrices.
which brings about underflow in place of the overilow [99].
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As for the FACR method, we express the flux function at the mesh point i, , by

nkj

‘//'z,,v'z N

l/"50 "“l rx7+zl/1

Y, sin {4.16)

P =
l\)l»—-

For the usual Laplacian operator the cyclic reduction can be applied efficiently in
both the r- and the z-directions, and application of the odd/even reduction before
the Fourier analysis reduces the count of the numerical operations considerably. ir
the case of the Grad-Shafranov operator, however, good efficiency of the cyclic
reduction method is exhibited only in the z-direction, and the Fourier analysis is
applied to the solution directly from the beginning. By substituting the above
Fourier series into Eq. (4.7) we obtain

-1

L, Let Al vl o= 8H

s

gzk_glk(A )27 1{4:8!
A2N\? (Az)?
=7 (419
Hi <Ar> +2r,-Ar’ R
A2N\*  (4z)?
S AN CEl 420
K (r) 2r; Ar (4.20)
= 2 / \1
A -2 (—— 1—-2 R 4213
‘ [\Ar) +1-2e0s( T )| {
You=V¥ie or i {4.22}
8k =80 or g4 {4.23}

V=¥,  gu=g, for k=0orN/2. (424

In the original FACR algorithm Eq. (4.17) is solved by the cyclic reduction method,
which is extremely advantageous in the case of the usual Laplacian operator. For
the Grad-Shafranov equation, however, necessary counts of the numerical opera-
tions to solve Eq. (4.17) are about the same among the cyclic reduction method, the
method of recursive formula [1027, and the LU decomposition method [1€3].
because ail the matrix elements are to be calculated at each step. As for the com-
parison between the DCR and the FACR methods the above situation is no!
altered. But in a large computer the FACR program is more preferable because it
is not necessary to save the memory space so tightly and, moreover, high vector
efficiency is difficult to attain for the DCR program in comparison with the FACR
program. This issue will be discussed in 4.4.

(2) The iterative solution method. As the direct solution methods of the linear
equations have been well developed to a sophisticated levei and farther develop-
ment seems difficult, some good iterative methods were locoked for. Detailed
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descriptions of representative classical iterative methods such as the SOR method,
the ADI method, and the CG (conjugate gradient) method are found in
monographs and review papers [104-106]. In the equilibrium solvers of the early
stage of tokamak research such kinds of numerical methods were often used (e.g.,
[31,32]) but recently these are not considered to be efficient for the purpose.
However, the progress of computers in the fields of vector and parallel processors
again stimulated the investigation of the iterative methods because the iterative
algorithms are more easily adaptable to vector or parallel processors than direct
methods. In general the iterative procedure [104] to solve a simultaneous linear
equation,

Au=f, (4.25)
is represented by the iteration of the equation,

Su+ 1 =Tu" +f, (4.26)
where the matrix A is divided into two matrices as
A=S-T. (4.27)
The error of the solution, ™ =u™ —u, develops as
et =Me', (4.28)
where
M=S"'T. (4.29)

From the above equations criteria to design an efficient iterative algorithm is sum-
marized as: (1) S~* should be calculated as easily as possible and (2) the spectrai
radius, p(M), of the matrix M should be as small as possible in comparison with
unity, where p(M) is the maximum of the absolute values of the eigenvalues of the
matrix M. In order to meet the above antipodal requirements the multi-grid
method (MGM) was devised and applied to the solution of various linear problems
[107-1107]. This method can be applied not only to the linear equations but also
to singular equations and eigenvalue problems [110, 111].

The basic idea of the MGM algorithm is that, by choosing an appropriate simple
iterative procedure, the eigenvalues of A for the short wavelength modes are made
relatively small and converge rapidly enough for a given mesh resolution, and the
rapid convergence of eigenvalues of longer wavelength modes (smoother modes)
can be attained by the subsequent choice of coarser meshes. According to the above
basic idea, the calculation of the MGM algorithm is carried out at each level from
the level /=L with the finest mesh to the level /=0 with the coarsest mesh
(smoothing and restriction processes) and afterward the calculated data are
transferred from the lower levels to the higher levels (prolongation process). To be
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more precise on the process at the level [, first we consider the /level equation of
the vector wu,,

Alulzf/' 43\,‘}

i,

Then, by the simple iteration method, e.g., the Gauss—Seidel method, we solve the
above equation and obtain an approximate solutin. U, which is called the
“smoothing” process, because this process derives a lower level equation for a
smoother solution. Thus the (/ — 1)-level equation is given as

A =1, {4.31}

by calculating the /~level defect, d,, and introducing the resiriction operator, K. as
d,=AU, -1, {432,

f,_,=Rd, (433

where “restriction,” R, means to get data on the (/— 1 )}-level mesh from the data on
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[

~

Call Projoggation
MGM(E-1.f,_ U _)) wy = PU,

Fic. 4.1. Flow diagram of the MGM algorithm.
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the /-level mesh. On the other hand, “prolongation,” P, is the interpolation process
from the data, U,_,, on the coarser mesh to the data, w,, on the finer mesh as

w,=PU,_,. (4.34)

After the lower level solution U, _, is transferred and prolonged, the /-level solution
is constructed as

U,=U0Y —w, (4.35)

If it is necessary, the smoothing process is repeated for K times in each level before
the solution is transferred to the higher level. The MGM cycles with K=1 and
K =2 are called V-cycle and W-cycle, respectively. The flow diagram of the MGM
algorithm is shown in Fig. 4.1. In order to visualize the recursive operations among
the levels, the path diagrams of the MGM algorithm for two cases with L =4 and
K=1, 2 are shown in Fig. 4.2.

There are a few examples of the application of the MGM algorithm to the MHD
equilibrium solvers. Braams developed an axisymmetric MHD equilibrium code
and gave some speculations on the application of the MGM algorithm to the
problems on axisymmetric equilibrium solver in the inverse coordinate system and
the three-dimensional equilibrium calculations [1127. As for the axisymmetric equi-
librium problem in the usual coordinate system the author succeeded in developing
an efficient code which is about three times faster than a code with the well
optimized Buneman algorithm. Real-time interpretation and control of an experi-
ment on a time scale of about 10ms or less were expected to be a promising

FiG. 4.2. Path diagrams of the MGM algorithm for L =4 and K=1 (a) and 2 (b).
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Crd

application field of the MGM equilibrium code. The author speculated that the
MGM algorithm plays an important role in development of the inverse equilibrium
solver because there are no competing algorithms as the DCR algorithm in the case
of the real-space equilibrium solvers. Application of the MGM algorithm 1o the
ihree-dimensional equilibrium problem has been initiated by the author but
satisfactory results have not been reported yet and the development of appropriate
adaptive method to adjust the grid to the magnetic configuration is required before
the MGM algorithm is fully utilized for this problem.

4.1.2. Finite Element Method

When one solves a system with a complicated geometrical shape the finite
element method is more advantageous than the finite difference method because of
the flexibility of choice of a mesh shape. In contrast with this advantage the matrix
generated by the finite element method is, generally, more demse and more
arithmetic operations are required to calculate the matrix elements in comparison
with the finite difference method. From the viewpoint of the geometrical shape the
computational object of MHD equilibrium in a fusion device is extremely simple
among the engineering calculations and one cannot, usually, take advantage of the
finite element method in the calculation of MHD equilibrium. For limited problems
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Fic. 43. An example of the FEM mesh structure for an equilitrium calculation.
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of MHD equilibrium the finite element method is more advantageous than the
finite difference method. Examples of these cases are the inverse equilibrium solver
and some other applications where information on the magnetic flux surfaces
should be explicitly used during the calculation process, such as the analyses of
MHD equilibrium with flow. In the following we describe the finite element for-
mulation of the MHD equilibrium problem and some related topics. To define the
problem clearly we treat the nonlinear eigenvalue problem described in Section 3.2.
First we derive the objective function of the finite element formalism as a weak form
of Eq. (3.24) as

Ly 1) = (%" L ym ) =20 (y), ¢t ), (4.36)
SOy = =21 Tyl =Y /rg). (4.37)

By executing a partial integration the objective function L(y) is rewritten as

1al/jn+1 2 la¢n+l
roor )+<I_ 0z

Liy"th)= —J rdr dz {( ) = Joo(Y") ‘/’MH} (4.38)

r

By using an appropriate set of linear basis functions, the functional L is represented

by N parameters (Y, Y5+, .., %" "), where N is the number of nodes (Fig. 4.3).
Simultaneous linear equatlons with respect to Y ”*+' are immediately derived as
Ayrti=B" (4.39)
n+1
1
n+1
prtl_| 72 , (4.40)
n‘+ 1
N
Bng/n+1= _2ff(¢n) l//n+1dS, (441)

where the matrix A and vector B” are derived according to the standard procedure
of the FEM formulation.

There are several possibilities for the choice of the expansion of the function
and the finite elements. Usual choice of two-dimensional fintic elements for the
MHD equilibrium calculation of the plasma are 3-node triangular and 4-node
rectangular elements with linear and bilinear basis functions (Fig. 4.4), respectively,
which were employed by Takeda and Tsunematsu for the SELENE code [48].
Application of 8-node isoparametric elements (Fig. 4.5) to the problem of flow equi-
librium instead of the 4-node elements was carried out by Kerner and Jandl [45].
In this code a technique for storing the stiffness matrix and solving the system of
linear equation is used where only the non-zero elements are processed. They found
no remarkable difference under the same computational condition between the
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FiG. 44. Triangular and rectangular elements with linear and bilinear basis functions, respectively.
and corresponding isoparametric transformations: (a) a triangular element; (b) a rectangular elerent.

4-node (bilinear) elements and the 8-node (biquadratic) elements. Also the effect of
the mesh rearrangement was investigated and it was concluded that the mesh
rearrangement causes an interpolation error but finally a set of sufficiently accurate
magnetic surfaces is recovered (Fig. 4.6). By assuming that a 21 x 21 finite element
net is sufficient for most applications they estimated that accurate solution is com-
puted after 20 iterations in 5 to 10s of Cray 1 CPU time. Another extension of the
method is to employ higher order elements. By using a higher order basis function,
such as those by Felippa [113] and by Melosh [114] one can obtain directly the
derivatives of the magnetic flux function, éy/0r and &Y/dz as well as the function
i itself. If one uses a linear basis function for a triangular element and combination

2 fi f 2 5(7
X3 | 4x //
3
5 g s 67{ /
!
X1 2X 7 M/J
| 4
3 7 4 3 7
X, R

~{6

Fic. 4.5. Isoparametric mapping between the local and global systems for the 8-node rectangular
element [43].
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Fi16. 4.6. An example of the convergence curves of the FEM code by Kerner and Jandl [45]. The
steep curve is for the case without the mesh rearrangement.

of a bilinear basis function and isoparametric transformation for the rectangular
element the solution becomes continuous on the edges of the elements. On the other
hand, for the higher order elements not only the derivatives, dy/ér and é/0z but
also the flux function ¥, can be made continuous on the edge of the elements.

The FEM solution of the first type of free boundary problem was formulated by
Kikuchi [80] with mathematical strictness. The procedure is described for the
model equations (2.94) and (2.95) (see [86] for the more general case), as follows:
Let X} be a set of piecewise linear polynomial functions u, such that u,=0 on I"
(h: the maximum length of finite elements in R?). In this functional space
approximation of the weak form (Eqs. (2.94) and (2.95)) given by

LUy, vy = Ah(f‘(uh), Vi) Vv, GXS’ (4.43)
u,+leXt, (4.44)
where
ou 8v
Cuy vy = Z f o (4.45)

The corresponding linear equation (Eqs. (2.96) and (2.97)) are also approximately
expressed by the equations

{Ou> Vi) = Ano(Bi> Vi) Vv, e XG (4.46)

(Prs 1) =1, (4.47)
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whick have a simple eigenvalue 1,,>0 and a unique solution ¢,>0. From
Egs. {2.101) to (2.102), the equation for u; is derived as

Cuifs vy = A ) vy). {4.48)
uf +ee Xt 1449}
and uj¥ is decomposed as
uf=¢,+el,+w,, {4.50}
W, ¢4)=0, {451}
(w5, #4) =0, (457

where the equations for ¥, and w, are

Wi Vi) — Ao Vi) = Apo( L, @), Vi), {4.53
(Wi 30 — Apo(Wyy vp) = (ihﬂuf) — AnoUf —Ehnoll, @) s, v)) (4.54}

and the eigenvalue 4, is given by

/'{ — (u/=1k7 ¢h) +£(1’ ¢h)
g (f(ulT ), ¢/1)

The solution ¢, of Eq. (4.53) can be obtained from the linear algebraic equation.
The iteration of Egs. (4.54) and (4.55) is contracting, and u,, derived from Eq. (4.50}
gives the unique solution of Eq. (4.43) for sufficiently small |¢} which corresponds
to an approximate solution of Eqgs. (2.93) and (2.94) for sufficiently small 4.

i
L
wh

o

4.1.3. Cther Methods

In this subsection we describe three numerical methods which cannot be classified
within the previously described framework. As for the Green's function methed and
the expansion method with orthogonal functions we present only brief descriptions
because at present they are replaced by more efficient methods. And we describe the
conformal mapping method in a rather detailed manner.

(1) Greer’s function method. The Grad-Shafranov equation, Eg.{3.2Z7}), is
formally transformed into an integral equation,

=44 ).

The concrete form of the above integral equation is given by using the Green's
function of a ring current as

A* = [ Glrz ', ) dr' de (457}
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where the Green’s function G(r, z;#', z') is given in 3.1. The equilibrium solver
based on the Green’s function is written according to the following numerical
procedure [40, 41, 115]: (1) set initial values to mesh points (r;, z;); (2) calculate
plasma current density J, ; at each mesh point; (3) iterate the elgenvalue appearing
in the right-hand side of the Grad-Shafranov equation (the nonlinear eigenvalue
problem) under the condition of constant total plasma current; (4) calculate i solu-
tion at the (n+ 1)th step Yo 3! using Eq. (4.56); (5) check convergence by com-
paring ¢, . and yor'; (6) repeat the above process if not converged. This method
is very s1mple and intelligible. The magnetic fields due to the plasma current and
the external coil current are clearly separated, which is advantageous for the
engineering applications. On the other hand, generally, it takes much computing
time in comparison with other more efficient codes and one cannot attain a solution
with higher resolution because of the appearance of dense singularities.

(2) Expansion with orthogonal functions. MHD equilibrium calculation based
on toroidal multipolar expansion was first proposed by Feneberg and Lackner
[36] and the scheme was tested for various plasma configuration with force-free
equilibria with a simple sharp boundary distribution of volume currents. A numeri-
cal equilibrium code SPHEX using this method was reported in detail by Seki er
al. [427] which is applicable to more general current profile. First, the magnetic flux
function ¢ is expressed by a sum of the flux function due to the plasma current ¥,
and the vacuum magnetic flux function ¥, due to the external coil currents. Then
the Grad-Shafranov equation (Eq. (2.7)) is rewritten as

A%, =SW, + o) fr, ¥, + Vo) (4.58)
where the form factor S defined by Egs. (3.2) and (3.3) is used and
Flr W, + o) = —pord y(r, ¥, + o). (4.59)

Then the flux function ¥, is expanded by a set of the associated Legendre functions
of the first type P)(x) and by using the orthogonality condition the
Grad-Shafranov equation is transformed into the equation which determines the
coefficients of the expansion. Solving the equation we can easily derive the final
solution as

e jO’ " g,(p) dp] JI— Pix), (4.60)

2n+1 P! (x)
2n(n+1)J_

gn(r)z ¢p+lp0) f(r \/ l//p—*'IIIO ’C. (461)

As the right-hand side of the equation contains i, one must solve this equation
iteratively in order to obtain the equilibrium solution.
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Alladio and Crisanti [437 developed an equlibrium solver based on the torcidal
multipolar expansion in the fully toroidal coordinate system (4, @, ¢} [116]. The
method is advantageous especially when used for magnetic measurement [1i7]
because it can easily provide various macroscopic quantities such as the current
density weight center [727], the shape of the last magnetic surface [118], and the
triangularity {117]. Especially, it is proved that the m-number spectrum of the
internal multipolar moments contains information necessary for separation of &,
and /./2 in the electromagnetic measurement. '

(3} Conformal mapping method. Goedbloed [46] developed a conformal
mapping method for solving the Grad—Shafranov equation, where two steps of con-
formal mappings from the original z-plane to the computational w-plane are con-
sidered: (I) the Moebius transformation (z — () of the unii disk |z| <! ontc ths
unit disk |{] <1 such that z =4 (J: position of the magnetic axis) corresponds o
<=0; and (II) the mapping ({ — w) of a simply-connected region enclosed by the
curve (({,) (I',: curve of the plasma surface in the z-plane) onto the unit disk,
w] < 1. The resuitant mapping w(J(z)) is also a conformal mapping which trans-
forms the plasma boundary 7, in the z-plane ontc a unit circle |w|=1 while
shifting the magnetic axis x=0 to the origin of the w-plane (Fig.4.7). The
Grad-Shafranov equation is solved in the w-plane by using Fourier representations.
The advantage obtained by such a transformation is that the number of Fourier
harmonics needed for accurate representation of an equilibrium can be reduced
substantially by the Moebius transformation and that the inversion of the Laplace
operator can be performed analytically in the cylindrical coordinates in the w-plane.
As a natural consequence of the above mappings this method is suitable for selving
the MHD equilibrium problems with a fixed boundary condition where the posi-
tion of the magnetic axis, J, is substituted for the approximate poloidal beta, 5,. as
an input parmeter characterizing the equilibrium.

The explicit form of the Moebius transform is

(4.62)

The existence of the mapping (II) is guaranteed by the classical Riemann mapping

o+

N
1 1)\

——

Fic. 4.7. Conformal mapping used for the equilibrium caicuiation [461.
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theorem [119]. Such a mapping is expressed by a nonlinear integral equation of a
type of Hilbert transform as shown in the following. We consider an analytic func-
tion, { = g(w), which transforms a unit disk, |w| <1, to a simply-connected region
in the {-plane. By the Cauchy’s integral theorem, the value of g(w) for w=re”
(r<1) is given by the integral of g(w) on |w| =1 as

L g™
gw) =5 fo et (4.63)

The boundary value of g can be expressed by
gle™)=gr(t) +ig, (1), (4.64)

where g, and g, are periodic functions. By taking the limit, r — 1, with r <1, we
obtain an integral relation between g, and g, (Hilbert transformation) as

ll‘)——A —-1 PJM—I cot = (l" dr' 4.65
gR( 2 o 2 2 8r ) ’ ( . )
1 J‘zn (l") It 4.66

‘1 2 o gR s ( . )

where P denotes Cauchy’s principal value, and 4 =0 if g(0) =0. Due to its convolu-
tion form, Eq.(4.65) can be solved easily with respect to g,(z) by using a fast
Hilbert transform (FHT) [46] based on the fast Fourier transform technique. Next,
the shape of the boundary in the {-plane ({ = pe™) is specified by the equation,

p=1(0), (4.67)

and the following function is introduced to make correspondence between the
angular variables, ¢ and 6,

F(w)=1In((w)/w), (4.68)
which takes the values at the boundary, |w| =1,

F(e")=In(f(8(r)) + i(B(z) — 1). (4.69)

The real and imaginary parts of the right-hand side of Eq. (4.69) satisfy the relation
expressed by the Hilbert transformation. From this relation one can derive a non-
linear integral equation for the unknown function 0(t) as

In(f(6(1))) = —% P J':” % cot (%) O(1')— 1) dr, (4.70)
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and this equation is solved iteratively by using FHT. In this way the compiete
mapping comprised of the two steps of the mappings is derived as

e oy glwh
Z V)= ?zb 1—0' —_———
(wy=x+10 =+ ( ) T+ og0r)

m ,imi
¢ mS €,
1

~

8

—5+

£

"

where w = se” and the ¢,,’s (real for up-down symmetric cases) are obtained from
the Fourier expansion of the numerically obtained boundary function,

oo
e"y=8+ ) ¢,

m=1

N
ot}
[

After some cumbersome handling of equations, the Grad-Shafranov equation in the
w-plane is derived as

AW = AH(P), (4.73)
where
o 1(?( 6>+162 4741
=-S5 - 3 Teb /ot :
S sos\ s/ stos? *
. g [18pW 1 éxi¥ L
H(YY=h'[F(P")+ Bx2+ex) IT(V)] + {“:‘ —t+ 3= ) (4753
T+ex\sdt ¢s  s°Ct ot
= | , o o
h(s, Y= || =~ /{Cx/Ct)" + (8y/Ct)", {4.76)
ldw| s

f{¥Y and H{¥) are the profile functions of dG/d¥ and dP/d¥, respectively. defined
as

£= —AI(Y), g—gz —ABII{YP), 1477}

and the other notations are the same as those in 2.7. Boundary conditions are
imposed on ¥ as

Y=1, at s=1, {4.78)

V¥ =0, at s=40, (4.7%3

to ensure the location of the magnetic axis at x =35, y=0. In Egs. (4.73) and {4.73),
A is an eigenvalue and B is determined corresponding to the value of 3. Eguation
(4.73) is solved iteratively as

AP = AH(P, (4.

0

o)
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where the inversion of the operator 4" is easily carried out by the integration over
the s-direction in terms of Fourier representation of ¥(s, ) and H(¥) as

1 o
Y(s, 1) =3 Yols)+ > P,.(s)cos(mi), (4.81)
m=1
1 o
H( 'I’)=§H0(s)+ Y. H,(s)cos(mz). (4.82)
m=1
with the boundary conditions,
Ylm(l ) = 25m,0a (483)
and the regularity conditions,
g dTﬂl
¥ (0)=0, —==0, (4.84)
ds

for m=0, 1, 2,... From the regularity conditions for the m=0 and the m=1
components, equations determining B(n) and A(n) are derived, respectively, as

fl (1—=5*) H{"(s) ds=0. (4.85)

0

A(n)=2 Jﬁl {é J sH(s') ds’} ds. (4.86)
0 0

This scheme is advantageous for its high efficiency because it uses only the FFT in
the main part of the solver. Moreover, this scheme can provide not only the flux
function ¥(s, t) but also the first- and second-order derivatives, needed in the
stability analysis in terms of the harmonics. However, because of the previously
described reason it seems rather difficult to apply this method to a free boundary
problem of the first type described in 3.1.

4.2. Inverse Equilibrium Solver

Theoretical analysis of MHD stability requires equilibrium with a very high
accuracy and an equilibrium solution based on magnetic flux coordinates is often
necessary. Sometimes, this is also the case for a transport analysis code such as a
1.5D tokamak code (see 5.4). For these purposes several inverse equilibrium solvers
in which the real space coordinates (r, z, ¢) are directly obtained as functions of the
magnetic flux functions, have been developed. Moreover, in solving the MHD
equilibrium by the inverse solver the poloidal angular coordinate is, inevitably,
prescribed and a coordinate system is directly obtained by specifying an
appropriate Jacobian. Solution methods so far developed are divided into two
classes, i.e., iterative methods and expansion methods. The former is subdivided
into the iterative metric method and the direct solution of the inverse equilibrium
equation.
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4.2.1 rerative Reconstruction of Metrics

The iterative methods are essentially based on iterative reconstruction of metrics
defined on the magnetic flux coordinates. The most intuitive one of this type is
employed in the SELENE equilibrium code by Takeda and Tsunematsu [487. This
code is developed on the basis of the iterative reconstruction of FEM meshes which
are constructed so that two of edges of a rectangular FEM mesh always lie
on magnetic surfaces (Fig. 4.3). On this FEM mesh structure the usual
Grad-Shafranov equation is solved directly as a nonlinear eigenvalue problem and
new mesh structure is reconstructed. This process is repeated until convergence
is attained under some prescribed condition. The FEM formulation of ihe
Grad-Shafranov equation is described in the previous section. The overall iteration
procedure is summarized in Fig. 4.8, An inverse equilibrium is obtained by an cuter
iteration where the internal iteration procedures are repeated until the resulting ¥
values coincide with the values of the mesh points. Figure 4.9 shows that the sigen-
value 7 converses anadraticallv with resnect to the mesh niimhers

Start

Read Input
Data
§
Preparation
for FEM
1Quter Loop)
v
Mesh Re- Convergence
construction No Check
Y
r‘ i B !
Matrix "A Calculate
L Stability &
Metrics ]
Decompose
Matrix "A" T 1
{’ [ Qutput B
B . tInner Loop
[ Vector "B J - - \
L Nﬂ End
Solution of ;
Linear Convergence Yes
Equation Check

Fig. 4.8. Flow diagram of the iterative metric method employed for the SELENE code [487.
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FiG. 49. An example of convergence of the eigenvalue 1 of the inverse equilibrium code SELENE
[48]. ¢(0) is the safety factor at the magnetic axis.

The inverse equilibrium solver by DeLucia er al. [49] is somewhat similar to the
above method but in this solver the procedure to iteratively determine metrics is
clearly realized without the help of the numerical process. First, the Jacobian ¢ is
given as

= (Vi xV0.-Vg)=p (i> . (4.87)
R,

By using this Jacobian the inverse equilibrium equation is derived as

A*y () =r2[Vr 2V =127 TG )y + (g h*%)e1=f(¥, 1), (4.88)

F=rlryzg—rez,)=u (RL> 48 (4.89)
0

R = (rg+23) 7, (4.90)

W= —(rory, +z92,)/%, (4.91)

where r, = 0r/0Y, ry=0r/00, z, = 0z/0y, zo=0z/00, and y is the poloidal magnetic
flux function, whereas ¥ is a coordinate constructed as a different label of the
magnetic flux function. The above equations are solved with respect to y for fixed
metrics and this process is repeated. The effectiveness of the inverse equilibrium
solver was demonstrated by analyzing the ideal internal and free surface mode
instabilities of equilibria generated by the above code as shown in Fig. 4.10 and
confirming a high f§ region of stability to internal modes and demonstrating high
B saturation of the latter modes.

4.2.2. Direct Solution of Inverse Equilibrium Equation

Both of the above methods solve the Grad-Shafranov equation and obtain the
poloidal magnetic flux as the solution during the iteration process. However, in the
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FiG. 4.10. An example of the equilibrium solutions by the iterative metric method of DeLucia e af.
[49]: (a) and ib) are current contours for §=0.020 and §=0.225. respectively: (¢} and (d} are Hux
surfaces for f=0.20 and §=0.225, respectively; {e) midplane current profiles.
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methods by Hicks er al. [517] and Vabishchevich er al. [47] real space coordinates
r and z are determined directly as dependent variables of the partial differential
equations by iterating the metrics of the system. They started from the usual
Grad-Shafranov equation and transformed the unknown variables from the
magnetic flux function ¢ and the poloidal angle 6 to the real space coordinates r
and z.

In the equilibrium code AXE Hicks es al. adopt nonorthogonal coordinate
system and assume a Jacobian of the form,

F=Jy(p) r'p, (4.92)

where they used p as the magnetic surface label instead of the magnetic flux .
According to Hicks et al. the nonlinear equations to be solved are obtained from
the Jacobian and the Grad-Shafranov equation as

S 2 22 4.
Jo(p): (appag p606p> (4.93)

,.2(1~1){J i( 1 dlp)[i(_) L1 <a_>:|
72 7P dp\Tep dp )| p?\ 20 a0

dw[lail r 1éz1 &%z 1 &raor

and

dp p60p808p+p69p696p p> 80° ép

162 04 dz / 5
———— 2p’ —A¥Y .= .94
2 50 3p ang ]}-FIP-I-—FF Wyae =0, (4.94)

where the quantities F, p, and p are taken as functions on a grid p,. Several addi-
tional constraints are considered as boundary conditions at the plasma surface,
plasma axis, and wall. The safety factor ¢ and pressure function p are given as

Jo(p) pF .
g(p) = ——%ﬁmﬂo’*vm:o (4.95)
p() = po(¥/ho). (4.96)

The numerical solution of the above equations is obtained by using the Fourier
transform as

r(p, 0) =Y, r,(p;) cos(mB), (4.97)

m

z(p, 0) =3 z,.(p;) sin(mb). (4.98)

m
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F1G. 4.11. Flow diagram of the AXE code [51].
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modifying the r and z coordinates as
F=r,0, Z=1z,6. (4.9

It was concluded that the convergence of the Jacobian equation is extremely rapid
when a sufficient number of m components is included (Fig. 4.12). The computa-
tional results were compared with a usual Cartesian equilibrium code RSTE(Q
[12G7 and it was concluded that the Fourier amplitudes are essentially the same for
m<T

On the other hand, Vabishchevich et al. assume an orthogonality condition.

Q0 oy eh_

- {4 100
cr OF + oz oz {4,:00)
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F1G. 4.12. Convergence of the equilibrium calculation by the AXE code with respect to the number
of Fourier components [51].

On the basis of this condition they introduce a new variable u(y, 6) as

0_av 2o

Hoz = ar B~ oz (4.101)

These equations are transformed into the following two equations determining r
and z as functions of ¥ and 6 if the variable p is determined from the
Grad-Shafranov equation as shown in the following third equation

0 or Jd /1 or
Y (l” *a¢)+£<;%)=°’ (4.102)
i oz o /1 oz
w(ﬂ’w)%(;;a;):o’ (4.103)
and
6#_ ar\? 0z\?
o “”[(w) +<aw> ]W’ ) (3104

Vabishchevich er al. show several examples of the calculation on fixed/free
boundary, cylindrical/toroidal equilibria but details of the numerical procedure
are not clearly described in their paper. In the case of this orthogonal coordinate
system, stability analyses often suffer from the singularity at the magnetic axis and
the method seems rather difficult to apply directly to the stability analyses.

4.2.3. Methods of Expansion in Poloidal Angle

The inverse equilibrium solver based on the expansion method has been exten-
sively studied in relation to three-dimensional MHD equilibria. This method
originated from the analytical equilibrium solution [121, 1227 in the early stage of
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tokamak research. A practical inverse equilibrium code (VMOMS) based on a
variational moment method in a general form was developed by Lao and co-
workers [507. First, the authors define a Lagrangian L, which corresponds to the
integrand of the Lagrangian in the description of the FEM formalism (Eq. (4.38}),

as

B B
L:,.<_z__pr\, (4,105}
2 2 J
where
V !
B, r‘/“, (4.:06)
F
B,=—. £4.107)

The Grad-Shafranov equation is reproduced from the Euler equation of this
Lagrangian L as

by {4.108}

where = &y/0r, Y_= Oy/0z. Next they define a volume integral of the Lagrangian
as

Q:j dr d= LOpo b, - 7). (4.109)
)

By transforming the independent variables (#, z) to (p, 6) the volume integral O is
represented as

Q:dep AOL(r, 7ps Py 2y Zos a ) (4.110)

It should be noted that the value of the integral is invariant under a translormation
of the coordinates. The variation of Q with respect to r and z under the boundary
condition of dr(boundary)=0 or éz(boundary) =0 yields

(5Q,=—” dp do or rz, G (4.1113
and

50.= — [ dp 4 5z rryG, (4112

J
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where

By specifying a particular representation for the poloidal angle 6 as

e

r(p, 0)= Y r,(p)cosnb, (4.114)

n=0

2(p, 0)= 3 z,(p)sin n. (4.115)
n=0

Euler equations describing r,(p) and z,(p) are derived as

(M, Gy=0, n=0,1,..,n, (4.116)
(M, G>=0, n=0,1,.,n, (4.117)
M, =rzqcosnb, (4.118)
M, =rrgsin n, (4.119)

where the angle bracket is defined as

<A>=j2"-d—9A. (4.120)

0271'

In this way the Fourier expansion coefficients r, and z, are determined by moments
of the inverse equilibrium equation with respect to the weighting functions M, and
M . The above moment equations are second-order ordinary differential equations
and each equation is supplemented by two boundary conditions. The second-order
equations are rewritten as a system of first order differential equations of the form

u’ = f(x, u), (4.121})

where u is a vector comprised of the Fourier amplitudes. To demonstrate the
applicability of the moment method, comparisons of the results of this code with
those of the fixed boundary two-dimensional code RSTEQ [120] were carried out
for the ISX-B and INTOR/FER tokamaks. Figure 4.13 shows the flux contours and
various profiles of the ISX-B tokamak, where the solid curves ate obtained by the
moment method and the broken ones are obtained by the RSTEQ code. In all cases
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Fi6. 4.13. An example of the flux surface contours {a) of the ISX-B tokamak by the inverse equi-
librium code VMOMS (solid lines) and the conventional two-dimensional code RSTEQ (broken lines).
Profiles of various equilibrium quantities of the ISX-B tokamak are shown in (b) [50].

there was close agreement between the results by the usual code and the inverse
equilibrium code.

The FCT equilibrium is often desirable for theoretical analysis because the
pressure and safety factor profiles can be prescribed before the calculation and the
high beta equilibrium is obtained easily. However, as boundary condition for
the FCT equilibrium cannot be assigned explicitly in the case of the full
Grad-Shafranov equation, it is rather difficult to develop an inverse solver for the
FCT equilibrium. To cope with this problem Tokuda et al. [123] developed an
inverse solver SELENEHB for the FCT equilibrium on the basis of the moment
method incorporated with a high beta tokamak ordering. The high beta tokamak
ordering equation (Eq.(2.81)) is adopted as the equilibrium equation. The FCT

581/93/1-5

L0
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condition for the equation is derived explicitly as follows. First, the equation
defining the safety factor g and the Jacobian ¢ are expanded as

o 1
g= 2 [1-sP(w)+ ...]<1+8x>, (4.122)

F=F04e g™, (4.123)

where s = \/@ and
_Oxdy 0Ox?dy

F=Slx =5 o (4.124)

By assuming up-down symmetry the real space coordinates x and y are expressed
by magnetic flux coordinates s and ¢ as

x=A+spcosO+s Y X, cosmb, (4.125)

m=2

y=sksin0+s Y Y, sinmo. (4.126)

m=2

The Grad-Shafranov equation is transformed to

1 ¢d¥ 1d¥P ¢
Ye— —|— ¢ 2 — ——T #(Vs-VO). 4.127
8,055 | G AV [ E S L @)
X107 x10™*
15} 115
-N K"
_A’
1ok 1o
05} 105
-k’
0 05 10

FiG. 4.14. Derivatives of the ellipticity «’ and the toroidal shift 4’ of a low beta tokamak plasma
(/e = 1072). Points are obtained by the inverse equilibrium solver and solid lines are obtained by an
analytical expression [123].
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tal (b}

S 5

Fic. 4.15. Derivatives of the ellipticity " and the toroidal shift 4’ of a higher beta tokamak plasmas
{B'e=90.2 for (a), B;/e=04 for (b)). Solid lines were obtained by the inverse equilibrium solver and the
broken lines were obtained by an approximate analytical expression [123].

By truncating the series at m = M and averaging each term with a weight of cos myg
fm=1, 2, 3, .., 2M) the following 2M ordinary differential equations are obtained:

dpP
(A, Wceosmbd=—2u*—— {xcos mb>. (4.12%}
dv ‘
With the constraining condition derived from the FCT condition and expansion of
the Jacobian,

/.\‘—C}—.>=3J‘sq ds, (4.12%)
b4

a system of (2Mf + 1) ordinary differential equations with unknown variables {A. g,
¥, X1, Y,,.., Xy, Y,,) is obtained and by solving it an inverse equilibrium is
obtained. Comparison with the analytical calculation of a low beta circular plasma
showed excellent agreement for the ellipticity and the shift of the magnetic surfaces
{Fig.4.14). As for higher beta plasmas, the comparison was made with an
approximate analytical result and also good agreement was attained (Fig. 4.15}.

4.3. Numerical Mapping to Flux Coordinates

Linear MHD stability codes such as PEST [1247] and ERATO [125] are,
usually, written by using a flux coordinate system and the various metric quantities
necessary for the stability analyses are given at the mesh points defined on the flux
coordinates. Therefore, if the equilibrium solution is given by a conventional real
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space solver the solution should be mapped from the real space coordinates to the
flux coordinates and finally the real space coordinates r and z should be expressed
in terms of the flux coordinates Y and y.

The angular coordinate y in the flux coordinate system is defined by a line
integral on a contour of ¥ as

dl dl
=21 | — /¢ —. .
% 7B, / 78, (4.130)
The metric quantities which should be calculated at the (y, y) mesh points are
W, 1), z(p, x), or/dy, Or/éy, q(¥), dg/dy and the non-orthogonality parameter
B,=V -Vy/[Vy|* [125].

A crude mapping method is to draw a set of contours by linear interpolation of
 values given at the (r, z) mesh points and determine the angular coordinate y by
calculating the line integral along the approximate contours. Afterwards various
metric quantities are obtained by linear interpolation and numerical differentiation.
In this method the following problems are encountered: (1) it is very difficult to
obtain contour lines near the magnetic axis; (2) in general the error of the finite
differentiation with respect to { and y becomes large even if the accuracy of the
calculation of ¥(r, z) is high. For the stability calculation by PEST, Grimm e? al.
employed auxiliary quasi-cylindrical coordinates p and 6 defined as

r=Ry+ pcos b, (4.131)
z=psin 6. (4.132)

In terms of the auxiliary angular coordinate 6 the real space coordinates » and z,
and the straight field line angular coordinate y are expressed as

arl o (o oy . !

E w— P 3, (61‘ cos 8+ 3, Sin 0) , (4.133)

ozl oy (o oy -t ,

5 w— —P >, (61‘ cos 0+ 5, Sin 9> , (4.134)
F ) -1

4 =—3<€—¢ cos0+ sing) (4.135)

00l, qr\or ¢z

 — P eVt aar | Vi ik A o5l (e i P

paper by Grimm et al. The above differential equations are integrated by the
Newton—Cotes predictor-corrector algorithm and the values of r, z, and so on are
determined accurately on the mesh points in the flux coordinate system, where the
flux function ¥ is interpolated by the cubic spline method. In this case the non-
orthogonality parameter is expressed as

1 or or 0z Oz
B, x)= _W<w aﬂ-w 6_)(> (4.136)
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On the other hand, in order to resolve the problems appearing in the ERATO
stability analysis Tokuda et al. [126] employed a two-dimensional spline interpola-
tion [1277 as the mapping method, which satisfies the following two conditions:
(1) the value of the metric quantities are determined uniquely only by the set of the
data (r;, z;, ¥,) given on the (r, z) meshes and they are independent of the (i, x}
meshes; {2) the derivatives with respect to i are determined uniquely even on the
(4, x) meshes. The contour Y(r, z) =, is calculated from the differential equations,

dr I oy dz 1 ¢y

d- vyl Ayl e

(4.137;

where 4/ is a line element of a contour. To avoid a partial differentiation some
quantities are represented by line integrals along the contours as

[ = X = o
B, )=~ (; Gy dl =5~ aﬁ G(l) di). (4.138)
dg F' ¢ dl Foroa.
= — @ G(N) dl, (4.13%
d ZRTI'ZB‘U+2T[+ ()i )
G:‘_ Bp <ai 2_(@_1#)3 @le/,_agwr
V| oz or &r? 922
oY Y &y IOy )
4 — - — 140)
or 0z Or 6:} B, Cr (4.140)
10° S 10°
\\\ 7 10" o ;
T T
0 AR,y ]
o F mezfx;
£ 2,1 X . g
&8 8 0 N
u:J [reg i'/ ivav!
_10 ég,
10—y § 561 8% -10%5 X T
; (b}
{a)

F1G. 4.16. Examples of relative errors of quantities dg/dy (a) and @R:3y (b) calculated by the
two-dimensional spline mapping (lower curve) and a linear interpolation mapping {(upper curve) [126].
The solid line in the subfigure (a) shows the analytical value of dg.'d.
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The derivatives of dr/dy and Or/éy are given as

or 1L Y qr, Y

- o TEP A (4141
o qrdy

o (4.142)

Test calculations of the spline mapping method were carried out for a model
equilibrium,

N2

Y(r,z)=2=n <r2+bz> . (4.143)

The error level of the numerical calculation of the metrics was obtained and com-
pared with the analytically obtained metric quantities. Some examples are given in

Fig. 4.16, which shows that extreme improvement is attained in comparison with a
mapping method based on the linear interpolation.

4.4. Numerical Technique for Vector Processor

Because the MHD equilibrium calculation is a basis of various analyses of the
fusion plasma and it is required to calculate equilibria many times, one of the most
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Fic. 4.17. Degradation of vector-processing efficiency at a short vector length region, observed in
the calculation by the DCR code [129]. L is the minimum vector length plus 1.
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important requirements on numerical codes is high speed calculation. For this
purpose, sometimes, we need improvement of the numerical algorithms to attain
efficient calculation on a vector processor type super-compuier.

When we solve an elliptic partial differential equation such as the Grad-
Shafranov equation, algorithms using the cyclic reduction method and the fast
Fourier transform (FFT) are very advantageous from the viewpoint of the total
number of numerical operations as described in the previous section. These
algorithms are highly sophisticated to match computations on a scalar computer
and usually one cannot attain a high efficiency on a vector computer if one simply
converts a code to a vector-oriented one. Matsuura ef al. [128] investigated *his
problem in detail and implemented vector-oriented cyclic reduction methods into
the MHD equilibrium code SELENEA40.

As for the DCR. the length of the main vectorizable DO loop decreases, e.g.
from 64 to 32, 16, 8, 4 during the reduction process. When the vector length s
shorter than a certain critical value, the vector operation, in general, takes a longer
time than a scalar operation. Therefore, one had better leave a shorter DO loop as
a scalar DO loop. An example of the critical length of a DO loop is shown in
Fig. 417 [129]. In the case of the FACR two approaches are considered. One is to
employ a vectorized FFT algorithm and the other is to utilize the paralielism found

[+:3

Multi-FFT

Performance Ratio

Single-FFT

1 10 100 1000

Multipiicity

Fi5. 4.18. Comparison of vector efficiencies of the multiple FFT and the single FFT [1261
Performance ratio of the vectorized multi-FFT with respect to the scalar FFT is shown as a function
of the multiplicity.
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TABLE 11
Performance Ratio of a Vector Processor for Equilibrium Solvers by FACR and DCR Algorithms

Algorithm for Scalar mode Vector mode Performance ratio
equilibrium solver (Fortran-H) in ms (AP-Fortran) in ms (vector/scalar)
DCR method 1668 916 1.82
FACR method 1119 286 391

in the calling sequence of the FFT subroutine. In the FACR procedure with
NR x NZ meshes, the FFT subroutine is called NR times on each Z mesh line. This
FFT loop with the length of NR is easily vectorized and high vector performance
is attained as shown in Fig. 4.18 [129]. A detailed description of the vector-paraliel
algorithm of the FACR method is given in Ref. [130]. The vector performance for
both the DCR and FACR is summarized in Table IL

As for the future trend of high speed calculation, paraliel processors will
inevitably used for MHD equilibrium calculation. In this case iterative solution
methods are more advantageous than direct methods which are widely used
for equilibrium calculation at present. In particular, the MGM described in
Section 4.1.1 seems promising as an effective algorithm for parallel processors.

5. MoORE GENERAL EQUILIBRIUM MODELS

In the descriptions of the previous sections we assumed implicitly that the plasma
is in a static equilibrium with isotropic pressure. This assumption is not valid in a
plasma subject to intense auxiliary heating. For example, neutral beam injection
(NBI) heating causes plasma rotation (plasma flow) and strongly anisotropic
pressure distribution. In order to apply the equilibrium solver to such a problem,
therefore, it is necessary to extend the model to cover equilibria with flows and/or
anisotropic pressure. Another important subject connected with MHD equilibria of
a plasma with additional equations is the analysis of equilibria with non-ohmically
driven currents. In the previous equilibrium code discussion on the current sources
were not treated explicitly and, instead, we had to specify profiles of quantities
which are difficult to determine experimentally, such as the toroidal field function
and the safety factor. However, it is necessary to treat explicitly the current sources
when we study MHD equilibria especially for a tokamak with non-ohmic current.
For investigation of these problems it is no longer sufficient to stay in the
framework of the MHD model and we must take into account transport processes
based on the kinetic theory. In connection with this issue and equilibrium solver
consistent with the transport process and an equilibrium evolution solver are con-
sidered.
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5.1. Equilibrium with Steady Flow

In this subsection we consider the MHD equilibrium equation with flow for an
axisymmetric plasma on the basis of the incompressible ideal single fluid MHD
model [1317. The basic equations of the system are

div(pV) =0, (5.1}
pV-VV=—Vp+JxB, (5.2}
rot(VxB) =0, 5.3
rot B=1J, (5.4}
V.VS=0, (55,

where S is the entropy. First, we derive two algebraic relations among the quan-
tities characterizing the flow equilibrium. From the Maxwell-Ohm’s law for an
ideal fluid (Eq. (5.3)), it is shown that the electric field V x B is expressed by an
electrostatic potential ¥, which is a surface quantity {(a function of oniy 2z
magnetic surface label), as

[
(@)

VxB=-V¥,,
VYV .= Q)Y Vi {57

3

4

A

It is easily seen from Eqs. (2.5) and (5.6) that the velocity vector lies on a magnetic
surface and it is decomposed into the parallel and toroidal flow velocities as

D,
V=-LB+u, Vs, ¢5.8)
p

where
U =r Q). (59

As the system is axisymmetric and the plasma is incompressible it is shown that the
function @, is also a surface quantity. When @,,(y) =0 the flow is purely toroidal;
otherwise the flow has a poloidal component given by

@u
pV -Vi=—=,
5

[a
1G;

,,M
wh

Therefore, the poloidal component of the flow divided by the poloidal magnetic
aldic the fonction B itsalf E o (8L har il Lnidal yariat; .

magnetic field. By using the above equation {Eq. (5.8)), the equation for entropy
conservation (Eqg. (5.5)) is rewritten as

wy
o
P

@
—MB.VS=0, (3.
P
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which means that the entropy is also a surface quantity provided that &,, is not
identically zero. On the other hand, there is no constraint on the entropy for a
purely toroidal flow (@,,=0); instead of the above equation (Eq. (5.11)) we use the
isothermal condition on each magnetic surface in this case as

T=T®). (5.12)

Then, we obtain the following magnetic differential equations (Bernoulli-type
equations) from the scalar product of the equation of motion (Eq. (5.2)) with
V¢ and B, respectively, as

@2
B-Vli(—p‘—”— 1) F+r2<15MQJ=O, (5.13)
2 y
y—

In the above equations the expressions for the pressure are assumed for the general
case and the purely toroidal case, respectively, as

p=SW)p’, (5.15)
_rT

where M is the particle mass of the fluid. Integrals, (/) and H(y), of Egs. (5.13)
and (5.14) are obtained as

¢2

1Y) = (p 1>F+; ®,,0, (5.17)
2 ¥

H(y) = (p”BZ ;1'292+y—11-5(l/1)py_1. (5.18)

From Eq. (5.17) it is known that the toroidal field function is no longer a surface
quantity except for the case of a purely toroidal flow. One can see, from Eq. (5.18),
that the density, ie., the pressure, is not an arbitrarily given surface quantity but
a quantity obtained by solving Eq. (5.18) simultaneously with the Grad-Shafranov
equation. Next. the equation for the general flow equilibrium which corresponds to
the Grad-Shafranov equation of the static equilibrium is obtained as

FO2 )\ Vi dd F®,\dQ Fdl
div|({1-— ‘“’)—]+V-B—M+ <rzg+ M)—
[( 0 )7 ay o Jav " Py
dH 1 das

— ———pr =" =0. 5.19;
+pd¢ 1 @ 0 (5.19)
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For the case of a purely toroidal flow Eq. (5.18) is reduced to a much simpier
form as

1 T
H(!.b)Z*EI‘ZQZ-I—EIlnp, (3.4

Gy
B2
<&
~

and the pressure can be expressed explicitly by the surface quantities 2 and # as

~ 2

r [ p 7
p=exp <H0+Qé 7) = pol¥) exp {\5’26 5

Lo

21

where
M T
Hi=— H+In — (5.2
o=F AT ‘
and
M
520:/ Q. {5.23;
v T

Then, the equation for a purely toroidal flow corresponding to the Grad-Shafranov
equation is derived from Eq. (5.19) as

, Op ar ‘
A¥ = —r* = —F— 5.24
S T 22
where the pressure gradient is obtained from Eq. (5.21} as
0 dH ,dQy
L =(——2+Q(Z,r“£—79\)p. (5.25)
oy, \dy Al

To solve Eg.(5.24) one should specify the functions F, H,, and 2,. Numerical
codes for this kind of equilibria were developed by Semanzato er al. {447, and
Kerner and Jandl {45] for a fixed boundary plasma and by Kerner and Tokuda
[132] for a semi-fixed boundary plasma. In the former two codes the FEM
approach was adopted and in the latter the cyclic reduction method was adopted.
An example of the numerical results by the latter code is shown in Fig. 5.1.

When one analyzes a more general flow equilibrium with both toroidal and
the poloidal flows one must solve the partial differential equation {Eq. {5.i9))
simultaneously with the associated equations (Egs. (5.17) and (5.18)) by specifying
the five functions, Q, @,,, S, I, and H. Also with the solution ¥, the toroidal fieid
function F and the density p which are not surface quantities but functions of », ¥.
and |Vy|* are determined. The difficulty of this problem arises from the fact that
the equilibrium equation (Eq. (5.19)) is not always an elliptic partial different:al
equation [133, 1347. This type of differential equation is classified by ar investi-
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FiG. 5.1. An example of equilibria With toroidal flow: (a) flow velocity; (b) safety factor; (c) total
pressure; (d) poloidal flux function are shown. It should be noted that the flux surface (e) and the
constant pressure surface do not coincide with each other [132].

gation of the second-order derivatives of the equation, (1—A>+oy?)y,, +
200, Y, + (L—A*+op2) ., where A= |®,,|/p is the Alfvén Mach number of
the poloidal flow with respect to the poloidal field and «=(24%/p) dp/d(|Vy|?).
From this analysis [133,134], it is shown that the equation is elliptic in the
intervals

0< A%< B,, A< A% <, 1< A%< 42, (5.26
s A
where
P
ﬁs_,yp_i_BZ’
46,82 1'? yp+ B®
A§=1_[1—yp+é’zJ T (5.27)
P
army [ 1 BBy | pt B
4 wp+ B? 2B’
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When the ellipticity of the partial differential equation is violated, shock waves may
cause a change of the topology of the flux surfaces [1357 and the equilibrium
problem may become complicated. From the viewpoint of the application, the sciu-
tion of the equilibrium with general flow may explain the experimentally observed
asymmetry of the density profile, which is usually too large to be explained by the
effect of the toroidal flow. In general, however, the neoclassical transport theory
shows that parallel viscous force associated with magnetic field modulatior: in a
tokamak is apt to damp the poloidal flow within an ion—ion collision time scale
[136-1387, and there is still a question of whether the steady state with poleidal
flow can exist or not.

5.2. Anisotropic Equilibria
The basic anisotropic equilibrium equation is given as

JxB=div P. {

L

283

On the basis of guiding center plasma theory [139] the tensor pressure P is
expressed only by the parallel pressure p,, and the perpendicular pressure p, as

1l

P:pﬂn®n+pl(|]—n®n}_ (5.26}

N

where n=B/B, 1 is the unit tensor, and ® denotes the tensor product. From the
above equations we can derive the set of equations which governs the anisotropic
equilibrium [ 140, 1417,

ap <
p.=p,—B azlzi K 5.30}
oF =I(Y), {531}

r* dp 1 d t N
Axp=——| —— — 12—V . Ve, (5323

v c |y a’dy G v-Ve,
where

a=1—p—l§2~@. (5.13)

As seen in Eq. (5.31) oF is a surface quantity instead of the toroidal field function
F for the case of isotropic equilibrium. Moreover, although in the isotropic case
both the current (J) and the magnetic field (B) vectors lie on a magnetic surface
and the natural coordinate system [10] is constructed so that both the J and B
trajectories are straight lines, in the anisotropic case the J vector no longer lies on
a magnetic surface. Instead, a quantity,

K =rot(gB). {

o

34
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lies on the magnetic surface and the natural coordinate system is constructed so
that the J and K trajectories are straight in this coordinate system [142]. There are
additional constraining conditions on the parallel and perpendicular pressures,
which come from the stability conditions against the mirror and firehose
instabilities [140] as

d 5o, " (5:35)
1 dp,
=g, (536)

The conditions are consistent with the condition that the equilibrium equation is
elliptic, and these are satisfied for a usual tokamak plasma.

Equation (5.32) can be solved numerically by the same methods applied to the
solution of the scalar pressure equilibrium. First, the parallel pressure profile is
specified in the two-dimensional space (i, B), and then the perpendicular pressure
is determined by using Eq. (5.30). One of the most important applications of the
anisotropic equilibrium solver is the analysis of equilibrium and/or stability of
intensely heated plasmas by, for example, neutral beam injection. In this case the
parallel beam pressure is calculated from the beam distribution function f,(u, E, {)
(u: the magnetic moment, E: particle energy), which is the solution of the Fokker—
Planck equation. Cooper et al. [143] use an analytical solution where the pitch-
angle scattering operator has been ignored. Figure 5.2 shows an example of the
numerical results of the anisotropic equilibria calculated by Cooper et al. [143].

{a) {b) (c)

FiG. 5.2. Parallel (a) and perpendicular (b) pressure profiles overlayed on flux surfaces (broken
lines) for a broad-profile tensor pressure equilibrium induced by parallel beam injection [143].

Background pressure profile (coarse broken line), parallel beam pressure profile (fine broken line), and
i file {salid Lige) i \
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Salberta et /. [1447 employ the solution, f,(y, E, {}, of a radial one-dimensional
version of the Fokker-Planck equation where the radial convection term, as well as
pitch-angle scattering operator, are retained.

5.3. Equilibria with Specified Current Sources

The previous sections are devoted to the description of numerical solutions of the
Grad-Shafranov equation by -specifying the functions p and F (or p and ¢). When
we use the surface-averaged paraliel current {J -B), instead of F or ¢, we can ireat
explicitly the sources of currents confining a plasma. Within the framework of the
neoclassical transport theory the surface-averaged parallel currenr [1457 is
expressed by

(I By=<{J-B)p+<J-B)z+<J B)s,

L
ey

Start )

Initial Guess of
Fand y

{

Construction of the
Flux Coordinates

(y,6)

Generalized Ohm's Law
<J -B>
Y
F-dFldy & dpldy,
<J-B>
1
F, A*y=R 10j

End

Fic. 53. Flow diagram of an equilibrium code with specified current source [152].
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FIG. 54. An example of equilibria with broad pressure profile which is consistent with the neoclassi-
cal transport process, where /,=140k4 [152]. (a) Contours of poloidal flux function ¢, where
Wais= —224x 1072 weber. (b) Toroidal current on the midplane. Total current, ohmic current,
Phirsch-Schliiter current. and bootstrap current are shown by solid line, dotted line, dashed line, and

dotted dashed line, respectively. (c) Safety factor for neoclassical equilibrium (solid line) and classical
equilibrium (dotted line).
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where (J-B) ., {J-B) are ohmic current and bootstrap current given by

(J-BYz=0y<E-B), (5.38)
e dpy i dpt re dTe i d:-rl\ RPN
<JB>B: "F<L31 W+Lgl dl‘L’+L3— {.’ill/ +[.32 E’/;), !\3,35“

and {J-B); stands for the non-ohmically driven current. The neoclassical trans-
port coefficients, ¢ y¢, LS, L%, LS,, and LY, are given in neoclassical transport
theory review papers [69, 146]. The equation for the toroidal fieid function F is
related to the parallel current as

dF_ [ F dp  _<3-B)]
W et aE |

{5.40)

By solving the above equation and the Grad—Shafrancv equation simultansously
one can obtain an MHD equilibrium self-consistently within the neoclassical trans-
port theory and the employed theory of the non-chmically driven current [1471
This set of differential equations is solved iteratively. Figure 5.3 shows an exampie
of the iterative processes, where the non-ohmically driven current is not considered
and the problem is formulated as a nonlinear eigenvalue problem with the one turn
voltage V¥, in a quasi-steady state as the eigenvalue,

7

Vi
E-B)= B,
(E-B) R, o

A¥
T
i

Ehst ef ol [148] obtained self-consistent equilibria with the current driven by fast
wave excitation. In this calculation {J-B); is given by a ray-tracing calculation for
a fast wave. Okano er al. [149] and Tani er al. [150] computed equilibria
sustained by beam driven current. Tokuda et a/. [151] developed a numerical code
SELENENEQ on the basis of the iteration scheme shown in Fig. 5.3 and computed
equilibria for a non-circular tokamak with ohmic current and bootstrap current
calculated self-consistently, where the neoclassical coefficients derived by a simpie
rational approximation given by Eq. (4.75) of Ref. [146] were employed {see alsc
[1527). The neoclassical effects on the electric conductivity and the deformation of
the plasma current profile due to the bootstrap current in a high beta rokamak are
clearly demonsirated by this calculation (Fig. 5.4).

S.4. Equilibrium Evolution

Calculation of the evolution of equilibria in a tokamak plasma plays an impor-
tant role from the viewpoint of the transport property. Transport analyses are
indispensabie in the studies of the confinement properties of the tokamak plasma
and various one-dimensional (1D} transport codes. called “tokamak codes” have
been developed [153-1587]. With the evolution of the equilibrium, however, the

S8L 33 1-6
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transport property, especially the energy balance in the plasma, changes, which is
not taken into account in a usual 1D tokamak code. Therefore, the transport
process of the tokamak plasma should be analyzed in a two-dimensional (2D)
space by taking into account the change of field geometry [159]. In other words,
the resulting transport such as the diffusion is a non-local process which depends
on the global nature of the boundary value problem. Moreover, although a
tokamak equilibrium is usually determined by assigning profiles of plasma pressure
and magnetic field, these profiles should not be given a priori, but they are
determined from the transport process and the initial profile. For some applications
the conventional procedure of equilibrium solution may be satisfactory but, for
other applications, self-consistent determination of the current profile is required. In
the previous subsection (5.3) we described the time independent method of self-
consistent determination of equilibrium with transport process. Another method for
the self-consistent determination is solving the equilibrium evolution on the resistive
time scale and a 1.5D tokamak transport code is favorably used for this purpose.
An equilibrium evolution solver (a 1.5D tokamak transport code) is, essentially,
composed of a two-dimensional equilibrium solver and a solver of the one-dimen-
sional transport equations averaged on magnetic surfaces; this was called an alter-
nating dimensional method by Grad. What should be remarked is that there are no
equations which advance in time the metric quantities included in the above trans-
port equations. To resolve this issue the metric quantities are transferred to the
transport code from the equilibrium code and the information on the current profile
necessary for the equilibrium calculation is fed back from the transport solver

l Start )

Y

Equilibrium . Output
Calculation of Results
A
@ Stop
Interface 1 Interface 2
Equilibrium to Transport to
Transport Equilibrium
(p=p(y), metrics) (p=p(y), F=F(y))
Transport
Calculation

Fic. 5.5. Overall flow diagram of an equilibrium evolution code.
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{Fig. 5.5). This scheme of equilibrium evolution solver was first proposed by Grad
and Hogan [1607] and afterward various numerical codes were developed by many
authors [161-166]. In this kind of solver time scale for change of the plasma shape
and its topology is comparable with the transport time scale and it is much slower
than the Alfvén transit time. Within this time scale plasma flows are generated so
that the force balance equation, Vp —J x B =0, is always satisfied [161]. This con-
dition constrains the “grid velocities” of the flux coordinates, which follow a iinear
integro-differential equation [ 167, 168]. In tokamaks, however, the toroidal flux, @.
is virtually unchanging and one can eliminate the grid velocities by adopting the
toroidal flux as the independent (grid) variable, by which a “conservation equation”
for the safety factor ¢ is derived [166, 167]. This model is suitable for practical
applications. The FCT algorithm is, therefore, inevitably employed for sclving the
Grad-Shafranov equation in this model. As described larer Jardin adopted another
approach in the TSC code [169] to treat the plasma motion, in which artificial
forces are introduced and the equilibrium equation is converted to an equation of
motion.

As for the transport process of the equilibrium evolution code, the density and
energy equations are given from the flux surface average of the conservation
equations for particles and energy. Closure relations are needed to determine the
relations among the particle/energy fluxes and the radial derivatives of density’
temperature as well as the electric field. Though the neociassical theory gives &
complete set of equations, in an actual plasma, anomalous transport processes seam

10, dominate and the hehayior of the tokamak nlaema cannai he yecavered by noly
including neoclassical process. At present, it is necessary to adopt a semi-empirical
set of transport equations for theoretical understanding of an actual tokamak
plasma on the basis of computation. As there is no reliable semi-empirical transport
model applicable to comprehensive understanding of ail tokamaks, we only
describe a simple but a typical transport model where the particle (heatj flux of
species is derived only from its density (temperature} gradient {diagonal model}
and the plasma obeys a classical Ohm’s law [1667].

As mentioned above, the “radial” coordinate is defined from the toroidai
magnetic flux as

p=+/DinB,, {3.42)

where B, is a typical (for example, externally applied) toroidal field. Ther equations
of density and energy of the plasma with ion charge number Z, are

N, s on )\
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3 %o, O orT,\ 5k on
- i " (kcC DC,\ T,
2172 ot 6p< ’ ‘5P) b< 5P>
_ DC 67[), ﬁn QA V' 4+ <S > V', (545)
n, d dp
0 p> 10 [ﬂﬂ J <C2C3>]
ofp 2231 (5.46
at(q uodp [ CIap\ ¢ !
3m, n, :
0,= (T T) (547)
m; T,
where

N,=n, V', o6.=p. V)3, a,=p,(V)?3 V' =dVidp, n;=n,/Z, (548)

Ci=V VP>, C=V VoI, Co=V (P, (549)

and D is the electron diffusion coefficient, K, and K; are the electron and ion ther-
mal conductivities; (S, stands for the particle source, and <{S,)» and {S;) stand
for electron and ion heat sources, respectively. To solve Egs. (5.43), (5.44), and
(5.45) the values of n,, T,, and T, must be specified. The constraint that the total
toroidal current I, is glven is the appropriate boundary condition for Eq. (5.46).

In the 1.5D code of the above type, concerns are more in the transport process
than in the equilibrium itself and the equilibrium calculation is rather simplified as
restricted to the fixed boundary problem. On the other hand, when one uses the
1.5SD tokamak code for an engineering purpose the plasma motion subject to the
transport process and the electrical property of the system is the main object to be
analyzed. In this case it is necessary to solve a free boundary equilibrium with the
electric circuit and realistically positioned external conductors. The TSC code is
suitable for this kind of applications. This code analyzed the time evolution of the
free boundary equilibrium of the axisymmetric toroidal plasma subject to the
resistive diffusion, the additional heating, and the electric current in the set of the
poloidal magnetic field coils. The basic equations of the code are the equation of
the 2D motion, the equations of the poloidal and the toroidal magnetic fluxes, the
surface-averaged entropy equations for the ions and the electrons, and the surface-
averaged equation of the plasma density. The essential feature of the code is that
the equation of motion is derived from the equilibrium condition and the artificial
viscous forces as

J(m)=JxB—Vp, (5.50)

F,= —v,[V’m—V(V-m)]—v,V(V-m), (5.51)
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where m is the plasma momentum, v, and v, are the viscosities. In the above equa-
tion the convective term is neglected. By enhancing the viscosity termas artificially,
plasma is always made in approximate equilibrium which mitigates the computa-
tional difficulty, due to the large difference of time scales of the MHD wave motior
and diffusion process. The free boundary solution is obtained by replacing the
vacuum with the low temperature, null pressure gradient plasma.

Various kinds of applications of the equilibrium evolution solvers have been
reported. Exampies of the former equilibrium evolution calculation subject o
realistic transport processes are found in the paper by Hogan [163], where the
author presents several calculations concerning the accessibility of high beia
tckamak states. Figure 5.6 shows the change of the Mercier and resistive inter-
change criteria of the PDX tokamak due to equilibrium evoloution aceording to
different transport models [163]. Miller [164] appiied the equilibrium evoluiion
code to an analysis of shape control of the doublet tokamak. The doubiet shape is
determined by the plasma current profile and the current flowing in the feld
shaping coils. Therefore, as the plasma current svolves, the field shaping coiis
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FiG. 5.6. Evolution of Mercier and resistive interchange criteria for a PDX model calcutation [1631:
{z) Mercier (sclid line) and resistive interchange (dotted line) for three transport models. The criteria
are gvaluated at = 0.8y ,,, =¥ *. (b) Evolution of the ballooning figure-of-merit for the thrse transnort
models of *. (¢) Evolution of P(y*) for the three transport models.
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must be actively programmed to preserve a desired plasma shape. It was found
possible to control the doublet shape by appropriately adjusting the current in the
field shaping coils. As for the TSC code, applications in the field of plasma
control such as the simulations of plasma shaping in the PBX tokamak [170] and
relaxation process of the spheromac [ 171] were reported. Applications of this kind
of codes are found in the experimental analysis codes or reactor designing codes,
where they incorporate two-dimensional phenomena in a real space, such as the
neutral particle diffusion or phenomena in a velocity space.

5.5. Comments on Three-Dimensional Equilibrium Solvers

Though the tokamak plasma is basically axisymmetric, in some cases three-
dimensional (3D) equilibrium analysis is necessary. In this section we summarize
briefly the purposes and the methods of the 3D equilibrium solvers for the analyses
of the fusion plasma.

The purposes of the 3D equilibrium analyses are considerably different between
the non-axisymmetric system such as stellarators [172] and the axisymmetric
system as tokamaks. For the research of the former system the 3D equilibrium
analysis is essential. The determination of the finite beta equilibrium itself is the
main purpose of the 3D equilibrium calculation of the system. By this calculation
the maximum beta value governed by the condition for the existence of the
equilibrium with well-defined magnetic surfaces is determined and the formation
processes of magnetic islands and/or stochastic regions appearing with increasing
beta value are analyzed. On the other hand, in the research of the tokamak, analyses
are made concerning the three dimensionality attributed to the imperfection of the
system and to the symmetry-breaking process by a nonlinear evolution of an
instability. An example of the imperfection is the ripple magnetic field arising from
the discreteness of the toroidal magnetic field coils. At present the main concern on
this issue is the degradation of the alpha-particle confinement [173], and the effect
of the non-axisymmetry to the neoclassical transport is also studied [174]. Up to
now the non-axisymmetric state appearing in a tokamak is mainly analyzed from
the viewpoint of the nonlinear evolution of instabilities [175], but the non-
axisymmetric equilibrium itself is also studied by some authors [176].

Methods for the solution of 3D equilibrium are divided into two classes, ie., the
variational approach and the non-variational approach. Numerical codes based on
the variational approach are further subdivided depending on whether existence of
the 3D magnetic surfaces are assumed or not. In the codes by Chodura and
Schliiter [177], Bauer, Betancourt, and Garabedian [178], and Hender er al.
[179] belong to the category where the existence of the magnetic surfaces is not
assumed a priori. On the other hand, in the 3D inverse equilibrium solvers based
on the moment method [180-183] the positions of the magnetic surfaces are
Fourier-analyzed in both the toroidal and the poloidal directions, which is possible
only when the existence of the magnetic surfaces is assumed a priori. Equilibrium
solvers based on both the above methods are used for design studies of the non-
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axisymmetric tori such as ATF [179] but the latter method is by far advantagecus
from the viewpoint of the cost performance [184].

The non-variational approach is also subdivided into two groups, ie., the direct
iteration method and the averaging method. In the direct iteration code the MHD
equilibrium equations (Eqs. (2.1)—(2.3)) are directly solved by using an iterative
procedure [185]. This method was originated by Spitzer [ 1867 and on the basis of
the idea a 3D equilibrium code was developed by Greenside et ol [ 187, 1887, This
method is effective for computing accurately an equilibrium with magnetic islands
and,or stochastic regions [189], and for self-consistent caiculation of the tokamak
equilibrium with ripple magnetic field [190]. The averaging method is an

~and a2 weak one varing rapidly along the magnetic hield lines. To derive the |

averaged MHD equation the original equations are expanded on the assumption
that the inverse aspect ratio and the nonaxisymmetric quantities are small
(stellarator expansion) [191-1937. Sometimes the assumption of the smali inverse
aspect ratio is not used [194-2007 then the resultant averaged equilibrium equation
becomes similar to the axisymmetric Grad-Shafrancy equation and the varicus
numerical methods described in this article can be used effectively. Good agreemens
of resulis of the averaging method with those of full 3D calculation is obtained
[196-2011].

6. APPLICATIONS

6.1. Beta Limit Optimization

As well as the studies of the numerical procedure of the equilibrium solution and
the development of the equilibrium solvers a lot of effort was put on the develop-
ment of optimization methods necessary from the viewpoint of the fusion reactor
development programs. Though the early tokamaks were circular cross-sectional.
later many theoretical and experimental studies were carried out for non-circular
cross-sectional tckamaks in order to attain high plasma current density necessary
for good energy confinement and intense ohmic heating under the condition of
reasonably high safety factor ¢, [27]. Solving the Grad-Shafranov equation numeri-
cally and calculating the beta limit from the Mercier criterion Peng et ol 1927
showed that a D-shaped tokamak is advantageous to attain a stable high beta equi-
librium. Afterward investigation of optimized high beta equilibrium stable with
respect 1o the ideal MHD modes such as the ballooning mode and the kind mode
were carried out [202-205]. In the optimization studies two different equilibrium
groups were investigated; one was a group of strongly-shaped tokamaks such as a
bean-shaped tokamak [206-2097], crescent-shaped tokamak [2107, and an ellip-
scidally shaped tokamak [211], and the other was a group of the low-aspect-ratic

1%

tokamaks {92, 212-214] which are advantageous of their compactness [2127. Al
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these studies are based on the calculation of the beta limit determined by the ideal
MHD stability and the results are summarized in terms of the Troyon factor [205],
gr=f/(I/aB,). On the other hand, the equilibrium optimization aiming at improve-
ment of the plasma confinement is also pursued. In this case suppression of the
trapped particle instability is the key issue [215] and the equilibrium was
optimized so that the y derivative of the second adiabatic invariant J=§v, d/ or
the velocity-space average value of the invariant over the trapped particles is
negative or as low as possible [216, 217] (see also [218] for the related topics).

As a typical example of the application of the high resolution equilibrium calcula-
tion in this subsection we present a beta limit optimization with respect to the
high-n (n: toroidal mode number) ballooning mode. Strictly speaking the beta limit
optimization should be carried out with respect to all possible modes of instabilities
but the high-n» ballooning mode is often the most stringent mode [219] which
imposes a beta limit on a tokamak plasma. This mode can be analyzed on each
magnetic surface independently, which makes the stability calculation extremely
easy in comparison with other instabilities.

The equation for the high-» ballooning mode instability was derived by Connor
et al. [220] as

dp -
(0 F)+ F rrz=ankig 1)

where g is the slowly varying part of the instability amplitude. of the so-called
ballooning representation with respect to the extended poloidal angle y defined in
an infinite region (— oo < y < o). The other quantities are expressed as

SN LAY "
o () b e
s L S 5o
/2(})——32 0. (2p+ B )_B“ 3. oy (6.3)
N Vg2 oz
=g {1+ (55 } (o4
=] a. (65)
where
o Wy (6.6)
3. ViP

The boundary condition for g(y) is

g(y=w)=g(y= — ©)=0. (6.7)
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FiG. 6.1. Flowchart of calculation of the beta limit optimization.

By letiing w® =0 the critical pressure gradient (dp/dy/}., is obtained as the eigen-
value, dp/ds, of Eq. (6.1). The numerical procedure of the beta limit optimization
is a combination of the FCT equilibrium calculation and the stability calculation as
shown in Fig. 6.1, where the pressure distribution is determined by the above criti-
cal pressure gradient analysis. In the actual calculation the ballooning equation
{Eq. (6.1}} is solved in a bounded domain of y[0, 2z ] for an up-down-symmetric
case by assuming that the profile of the safety factor is fixed during the optimization
process, where N is the parameter determining the approximate boundary of the
integration. The marginal equation (Eq. (6.1) with @’ = 0) is numerically soived by
using the Runge-Kutta method or the matrix method with the boundary condi-
tions,

g(0) = finite and g2aN)=0. 63}

An example of the beta limit optimization with respect to the high-n ballooning
mode is shown in Fig. 6.2 [221, 2227

Since the behavior of g(y) in Eq. (6.1) is determined in the limit of large v by ihe
Mercier criterion {2237, this criterion always predicts stability if the ballooning
criterien does. However, it is often convenient to evaluate it, since this requires only
an averaging of equilibrium quantities along magnetic field lines. rather than
solving a differential equation along the line, as

M=M+M,+M,>0, (59}
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FiG. 6.2. Example of calculation of the beta limit optimization. Subfigures (a), (b), and (c) are for
the case with moderate shear, whereas subfigures (d), (e), and (f) are for the case with high shear at the
plasma surface.

where
M, = (4 2"‘1> (6.10)
4 dir )
_ dp da*v q
M, = ‘P{ l// Q1 lﬁ (F Qq+47z F)} (6.11)
_ (% o a2l
M= () {(Fies0- e +ar L), (612)
dl
Q1=zn§§—r232, (6.13)
dl
0,=2n B (6.14)
c dl
0,=2n 7 (6.15)

When the local interchange instability is the limiting instability, the critical pressure
is obtained from the Mercier criterion [221] as

(@) _ G+ /C344C, G (6.16)
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where

M
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6.2. Engineering Applications

MHD equilibrium calculations give basic data which are necessary for desigring
a tokamak device. The confinement properties of a tokamak plasma is determined
on the basis of the MHD equilibrium. Therefore, the MHD equilibrium calcula-
tions of a tokamak plasma are directly related to engineering applications as well
as other applications. More specifically, the determination of a desired externai
magnetic field configuration and coil system, and analyses of the positional
instability properties are two major engineering applications of MHD equilibrium
calculations. There are also other engineering applications as analyses of shape con-
trol by using the equilibrium evolution code incorporated with the external circuit
equation [164] mentioned in the previous section. This problem is a rather com-
plicated one from the engineering viewpoint which includes the MHD equilibrinm,
transport process in the plasma, eddy current problem in the external conductors,
and electrical circuit outside plasma. In the following we describe the former two
applications.

The design of a external magnetic field configuration is formulated as follows.
The external confining magnetic field is determined from the equilibrium solution
by separating the confining field and the self-field from the composite magnetic
field. The simplest way to carry out this process is to calculate the self-fieid by
integrating the plasma current density over the whole plasma cross section and sub-

tracting fhe seilefield from the comnaosite field Hoawever thic nracese ic wery oy,

difficulty Shafranov and Zakharov [87] proposed the virtual casing principle in
which the surface integral of the plasma current in the previous calculation is
replaced by a line integral along a magnetic surface. To apply the virtual casing
principle one assumes an equilibrium configuration surrounded by a closed super-
conducting sheath S coinciding a magnetic surface. Outside this sheath the
magnetic field is zero, because the magnetic field due to the plasma current is com-
pletely cancelled by the surface current i induced in the super-conductor,

i=—1— B, xm, {6.18;

Ho
where B is the magnetic field of the equilibrium configuration at the surface § and
n is the normal unit vector perpendicular to the surface. Thus the magnetic field due
to the current in the virtual casing coincides with the confining ficld inside the
casing and outside the casing it coincides with the magnetic field due to the plasma
current with opposite direction. Therefore, by using the virtual casing principle cne
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can calculate the external confining magnetic field inside the virtual casing [72] as:
(1) determine a fixed boundary equilibrium by assigning the plasma boundary
shape; (2) calculate the magnetic field tangential to the boundary at the inner
surface of the virtual casing; (3) calculate the surface current density in the virtual
casing from Eq. (6.18); (4) calculate the magnetic field B,(s) due to the above
surface current. Calculation of the current distribution in external field coils is an
inverse problem from the magnetic field. This problem is reduced to a first type
Fredholm integral equation as

~

¢, 53€ i, (1) b.(s;1) dl=B(s), (6.19)
/

where
b.(s;/)=b(s;1)-[e,xn(s)], (6.20)

and /, i,(/), and b.(s; /) are the position along an arbitrarily chosen contour sur-
rounding the virtual casing, current density at /, and the magnetic field at s by unit
current at /, respectively. The above integral equation is an ill-posed problem in the
sense of Hadamard, and Zakharov used the regularization method of Tikhonov
[224] which minimizes the functional

di,

2
F:g@r (Ci,—B.,) ds+ § [kl(l) <Z> +hy(l) ig] dl, (6.21)

@ o) ) «

F1G. 6.3. Dependence of the approximation of the external coil currents on the cutoff Fourier
number K [4]: (a) K=1; (b) K=3; (c) K=5; (d) K=7.
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FiG. 6.4. Effect of using tco many Fourier components for the external current distributicn {7]
psing: {2) K=5, or (b} K=11, gives practically the same approximaticn to the prescribed plasma
surface.

where &, and k, are positive functions,  is the regularization parameter. Modifica-
tions of the above method have been proposed by many authors. Basically the
problem is made numerically tractable by dropping the requirement that the actuai
plasma boundary should coincide exactly with the prescribed one, while posing
restrictions on the location and current in the exrernal conductors. Lackner {73
represented the external current on the closed surface by a Fourier series truncated
at a given order K to enforce a controllable degree of smoothness, and expressed

the total field at the nth cycle as

K
Wr=yn+ Y alY. (6.22)

i=0

where W, ; is the field produced by the ith Fourier component of the external
current. The X+ | Fourier coefficients s were then determined at each iteration
to minimize the deviation of the flux function (Fig. 6.3}. Too many Fourier com-
ponents result in a strongly oscillating external current distribution (Fig. 6.4}
Instead of optimizing the current distribution in external coil systems Toi and
Takeda [2257 proposed optimization of the positions of external coils carrying
prescribed currents. In this method the position of a coil is restricted to a prescribed
curve and is represented by a single parameter such as a poloidal angle aiong the
curve and the objective function made of the square of the difference of the desired
magnetic fields is minimized with respect to the poloidal angles by using an
appropriate nonlinear programming algorithm. Due to the discreteness of the coil
currents unnecessary strong oscillation is suppressed and the solution is regularized
as shown in Fig. 6.5.

e
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Fig. 6.5. Example of the external coil design by using the nonlinear optimization algorithm [2257.
The subfigure (a) shows a constraining circle with radius of 1.25 m, on which the coils with currents +7
move during the optimization process. The coils are inhibited to enter the shaded angular regions. The
subfigure (b) shows the map of the magnetic field lines due to the optimized coil configuration. The
subfigures (c), (d), and (e) show the deviation of the realized magnetic field from the desired one, the
vertical magnetic field on the median plane, and the realized n-index.

The positional instability of a tokamak is primarily related to the gradient of the
external magnetic field and usually only a few parameters are sufficient to identify
the stability condition for this instability. Representative models used for analyses
of this instability are (1) rigid model, {2) rigid displacement model, and (3) general
linearized ideal MHD model. In the rigid model a toroidal plasma is represented
by a current carrying rigid conductor and the instability is analyzed electrodynami-
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cally, where plasma deformation is neglected. The stability condition [577 is

expressed by the gradient of the magnetic field (n,: #-index) for a circular cross-sec-
tional tokamak as

0<n,-<%, {6.

N
™I
L

where

r 0B

n=— .
B_ ér

B

. 53-\
b

By a slightly more complicated formula the stability condition for an elliptical
cross-sectional tokamak is also obtained on the basis of this model [226]. In the

08 06 04 02 0 -02 04
5

K

il

-05

FiGc. 6.6. Stability diagram for the positional instability of the Solov'ev equilibrium on the asis of
various models [2287. Broken line and dotted-broken line ir {a) show the decey index #,=0.0 and
n,= 1.5, respectively. Broken lines in the subfigure (b) are the stability boundary calculated by the solid
displacement model. Solid lines in both the subfigures show the stability boundaries calculated by the
general MHD model.
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rigid displacement model, uniform plasma displacement over the whole plasma
cross section is assumed and the variational principle is applied for this uniform dis-
placement [2277]. In the general MHD model no such assumption is introduced
to the plasma displacement and the instability is analyzed by using a general
linezarized ideal MHD code such as ERATO [125] or PEST [124]. Kumagai et
al. [228] analyzed the positional instability for the Solovev equilibrium [20] on
the basis of the above three models. They found that the stability conditions
obtained for these three models are rather different from each other, especially when
the non-circularity is large and/or the aspect ratio is small, as shown in Fig. 6.6. By
using the rigid model the stability condition is easily calculated because it is not
necessary to solve an MHD equilibrium. It is, however, concluded that the general
MHD model is indispensable to analyze the positional instability in a present day
large tokamak with highly shaped cross section and/or small aspect ratio. The
importance of calculation of the MHD equilibrium is remarkable when one
analyzes the positional instability of a tokamak with a magnetic limiter or divertor.
When a tokamak has a poloidal divertor on the median plane as in the case of the
JT-60 tokamak [2297], the external magnetic field changes its sign at the stagnation
point (X-point) of the separatrix magnetic surface. Consequently, the n-index varies
from plus infinity to minus infinity at the X- point (Fig. 6.7), which makes the
widely used rigid model useless for identification of the stability condition of this
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FiG. 6.7. Spatial variation of the n-index in a plasma with a separatrix magnetic surface [229]. The
external coil currents are adjusted to fix the X-point at the prescribed position.
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system and the general linearized ideal MHD model is indispensable. For a
tokamak equilibrium where the plasma surface coincides with the separatrix
magnetic surface we must be very careful to calculate metric quantities which
diverge at the X-point. In the calculation of Ref. {2297 a magnetic surface separated
inwards by &y, from the separatrix was chosen as the plasma surface. The
difference of the magnetic flux §y ., is defined as

5‘/’sep= hpsur'_lﬂbsep| =9 |¢’sep'—¢axi!$ q\é

where & of 0.001 is employed as a typical value of separation. To ensure high
accuracy, fine meshes with N, =512 and N.= 256 were chosen and mesh accumula-
tion near the plasma surface was adopted in the stability calculation. The main
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FiG. 6.9. Plasma displacement due to the positional instability [229]. Subfigures (a) and (b) show
the vertical positional instability, and subfigures (c) and (d) show the horizontal positional instability.
Subfigures (a) and (c) and subfigures (b) and (d) are the limiter case and the divertor case, respectively.

results of the analyses of the positional instability in the JT-60 plasma are sum-
marized as follows: (1) Even in the case of a tokamak plasma with an X-point,
positional stability is assured in a wide range of the m-index, 0.25<n;<1.2
(Fig. 6.8). This result, however, contradicts the result of the rigid displacement
model which gives wider stability window [2307]. (2) The vertical displacement is
well described as a rotation around the X-point and the horizontal displacement is
described as a radial flow into the X-point (Fig. 6.9). Both flow patterns differ con-
siderably from those corresponding to the rigid model or rigid displacement model.
(3) The current distribution affects the stability considerably. If the current profile
is peaked the stability window widens to the high n; side. All of these results
indicate that the MHD equilibrium calculation is very important even for the
calculation of global instabilities such as the positional instability.

6.3. Experimental Analyses

In a tokamak experiment basic information on the MHD equilibrium of the
plasma is obtained by measurement of electromagnetic signal. Needless to say,
detailed equilbrium can be obtained by using additional information by other
diagnostics but we can reconstruct a fairly satisfactory equilibrium configuration of
a tokamak plasma only by measurement of the electromagnetic signal from the
plasma. In most tokamak devices magnetic probes and flux loops are installed as
a system of the electromagnetic measurement. The usual magnetic probes are small
coils to sense the local magnetic field, and a long densely wound coil surrounding
the minor circumference of the plasma, called a Rogowski coil, is used to measure
the toroidal plasma current. Sometimes, a set of partial Rogowski coils which do
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not cover the complete minor circumference is used as in the case of the Doublet-111
tokamak [231]. A flux loop is a loop wound along the major circumference of the
toroidal plasma that senses the change of the poloidal magnetic flux ¢ inside the
flux loop. A flux loop surrounding the plasma minor cross section is called a
diamagnetic loop and it senses the change of toroidal flux, which is related to the
plasma pressure. In this section we use a set of data from the Rogowski coil,
magnetic probes, and flux loops as input data for the equilibrium analyses.
Christiansen and Taylor [232] have shown that the current distribution in an
axisymmetric toroidal discharge can. in principle, be completely determined from
purely geometric information about the shape of the magnetic surfaces. Determina-
tion of current distribution based on this procedure was carried out by Christiansen
et al. [2337 by using the X-ray tomography technique [ 2347, The electromagnetic
signals are only obtained outside the plasma that do not give information on the
shape of the inner magnetic surfaces and it is interesting to know to what exienr we
can determine the plasma equilibrium configuration by using such a limited set of
information. In the following we describe a method to determine the equilibrium,
especially the 8, /;, shape, and position, from the input data of the magnetic field
and the magnetic flux at several points outside the plasma. This kind of analyszs is
indispensable for experiments in a large tokamak and varicus numerical codes have
been developed by many authors [235-2407. Generally this procedure is divided
into two steps; ie., the first step determines the plasma positior. and cross-sectionai
skape, and then a more detailed equilibrium is obtained by solving the Grad-
Shafranov equation as a semi-fixed boundary problem by using the data of the
piasma shape obtained in the first step. In the second step an assumption is made
that the current disiribution is given by a simple function with a few parameters.

Data from

Magnetic
Measurement

Y

Boundary
Identification
Code:

Ptasma Boundary

4
fy

-

i

Equilibrium E

Code: %
]
1
K

Bp. &
Equilibrium Data

FiG. 6.16. Overall flow diagram to determine an equilibrium from a set of experimental dara.
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The overall procedure to determine the equilibrium is shown in Fig. 6.10. We
describe the two steps in more detail:

(1) The result of this step is not only used as the input data for the second
step but also used independently for the on-line control of the plasma position
and a fast and simple calculation method is required for this step. The toroidal
multipole method of Zakharov is one of the direct methods used to determine the
position and shape of the plasma [72, 117]. In this method the moments of the
current are defined as

um :j Xm(r’ Z) J¢(ra Z) dr dZ, (626)
where the y,’s are solutions of the differential equation,

{
V= Vi =0. (6.27)

The surface integrals over the cross section of the plasma are reduced to line
integrals surrounding the plasma cross section, and the multipole moments are
obtained from the electromagnetic signals measured outside the plasma. Thus the
plasma position, ellipticity, and triangularity are derived from the first, second, and
third moments, u,, u,, and u,, respectively. This is an elegant method but in

iE EEE.iiI iii 4 12 lailis £ alaa i P 1. adad 4+ ala 1. .
restriction.

On the other hand, the practical method of this step, widely used for the
experimental analyses of large tokamaks, is based on the least square matching of
the measured magnetic field and the calculated magnetic field which is produced by
filament currents or surface currents located inside the plasma. It is not possible to
determine completely the plasma current distribution from any external measure-
ment but it is possible to determine the multipole moments u,,’s and we can expand
the flux y, due to the plasma current as

M

‘/Ipz Z UK m- (628)

m=1

It should be remarked, however, that current distribution which realize a particular
set of moments, u,, .., u,,, cannot be determined uniquely. This fact enables us to
fit the outside magnetic field by varying the currents in the filaments or surface at
fixed positions. In the filament current methed [237-239], typically, six filament
currents are located inside the plasma region and magnetic field fitting is carried
out for six paramcters, ie., the currents in the six filaments. The location of the
plasma current filaments are arbitrarily chosen because the calculated boundary
position is rather insensitive to the positions of the filaments unless they are too
close to the boundary or they are located too closely to each other. The least square
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matching of the magnetic fields is carried out by minimizing the object function, =,
defined as

[\=]

N
D
i

M i
2= wi(b,—b}, {

where 5.s are measured magnetic fields and 5;’s are the calculated fields expressed
as

b=% 0515 +Y Q4. (630)
where 1’f and /? are the currents flowing in the external conductors and filamen:
currents in the plasma region. Q,; is the response matrix expressed in terms of the
complete elliptic integrals. There are several variations of this method, especialty
concerning the treatment of external conductors and constraining conditions such
as a fixed plasma current. When the tokamak device has an iron core and/or the
effects of eddy current in the external conductors play an important role, the system
should be analyzed very carefully. In this case currents in the external conductors
should be treated as unknown variables and the surface current model is more
suitable for the equilibrium analysis.

After the plasma position and the poloidal field strength on the plasma surface
are determined we can calculate the surface integrals S, and §, {Egs. (2.62) and
(2.63)). Then, the current beta §, and the internal inductance /; can be evaluated
using the measurement of the diamagnetic flux. In an actual experiment, however.
the current beta determined from Eq. (2.60) does not coincide with the current beta
from Eq. (2.61) because of the unavoidable experimental error. The beta value
calculated from the former current beta is called the diamagnetic beta f** and that
from the latter is called MHD beta ™" conventionally. In the tokamak research
these beta values, as well as the kinetic beta f*™, evaluated from the measurement
of the density, the temperature, and so on, are used in experimental data analyses
[235, 2407]. Generalization of the definition of the above betas to the anisotropic
pressure equilibrium was given by Lao er a4/ [238]. in order to determine the
MHD beta by Eg. (2.61) it is necessary to evaluate the internal inductance /; inde-
pendently from the calculation of S, and S,. One expedient is use of a fitting for-
mula by which the internal inductance is expressed as a function of the parameters
specifying the current profile and the plasma shape, current beta, and so on [235].
Another method is to calculate the equilibrium by parametrizing the plasma current
profile, which is described minutely in the following.

{2) On the basis of the information obtained from the first siep one can
obtain more detailed information of the equilibrium by solving the Grad—Shafranov
equation in the second step. Numerical codes for this kind of analyses are aisc
developed by many authors [231, 239]. As the plasma boundary is aiready deter-
mined by the first step calculation, in this step one solves the Grad-Shafranov
equation as a fixed boundary problem or a semi-fixed boundary value problem. The
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plasma current distribution is expressed by several parameters and the parameters
are determined through a nonlinear optimization procedure of the object function
composed of the sum of squares of the magnetic field differences. The number of
parameters is usually chosen as one or two. A key issue of this kind of problem is
whether it can properly determine the poloidal beta f, and the internal inductance
/;. In the analyses of the Doublet IIT tokamak [231] and JT-60 [239] the current
density is expressed as

J¢("» ‘/7) =Jy [ﬁpo Ri_

g =(1—y*). (6.32)

The parameters o and y correspond to the parameters with clearer physical
meanings, ¢,,;; and /,. Therefore, the free parameters of this system are (,, B, asis»
/). In an actual situation one uses the plasma current measured by the Rogowski
coil, and on the assumption that g,,;,= 1, which is considered to be good for the
case with sawtooth oscillations, determines the parameters f, and /. In this
analysis the Grad—Shafranov equation should be solved many times, even to deter-
mine one set of unknown parameters in the optimization procedure, and this series
of calculations must be repeated many times to obtain the time-resolved experimen-
tal resuits.

Luxon and Brown claimed that, in plasmas with significant non-circularity, the
internal inductance can be determined independently of the poloidal beta by this
method [2317. According to them the ability to separate the internal inductance
from the poloidal beta is dependent on non-circularity, where for the circular case

R -
N EXT) (631)

10 T T T T
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£
FiG. 6.11. Separation of 8, and /; by sufficiently accurate equilibrium calculation [239]. The square
of deviation between the observed and calculated magnetic field = (contours) is minimized in the §,—/,
space.
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they cannot be separated. On the other hand, Tsuji et al. analyzed the sxperimental
data of JT-60, a nearly circular cross-sectional tokamak [2397, and they concluded
that separation of f§, and /, is possible if the resolution of the equilibrium calcuia-
iion is high enough. In their calculation the outboard and inboard radii of the
piasma (R, and R,,), determined by the filament current approximation, are used
to define the plasma position and the SELENE40 code based on the DCE
algorithm is used to solve the Grad-Shafranov equation. The values of 8, and /; are
determined by nonlinear optimization of X in the f#,~/, space by applying the
Coggins method [2417]. The contours of = are almost paraliel lines in the §,—/
plane, which means that f§, and /; degenerate in the case of the circular cross-
sectional tokamak (Fig. 6.11). The detailed structure of the contours shows.
however, that the contours in the vicinity of the minimum are of extremely
elongated elliptical shape and a single minimum exists. It was also conciuded that
even if there is an experimental error separation of §, and /, is possible by solving
the Grad—Shafranov equation with very high resolution.

Another method for separation of f, and /, is to solve the equilibrium with
toroidal multipolar expansions [43]. This method utilizes the fact that the mult-
polar spectrum carries the complete information on the MHD characteristics of the
plasma. The multipolar spectrum at the plasma surface is calculated for a fixed
boundary plasma and the dependence of the multipolar co'nponeni's on the
poloidal beta value is obtained for a parameter of 2,4/ /2. Separation of §, is
rather difficult for a circular cross-sectional tokamak as prewohai y described. And
because of existence of unavoidable randam error there 1s a threshold value for the
parameter 8,4 /,/2, under which separation is impossible.

Recently reconstruction of the current distribution from the externally measured
magnetic signals on the basis of the solution methods of the mathematical in VETrse
probiem [ 242, 2437 is being studied extensively by several suthors 1244, 246

7. SUMMARY AND DISCUSSION

A lot of equilibrium solvers for a tokamak plasma have been developed and used
for various objectives such as the MHD stability analysis, the experimentzal
analysis, and the design of new devices. From the viewpoint of the numerical algo-
rithm to solve the Grad-Shafranov equation with a free boundary condition the
equilibrium solvers based on the cyclic reduction methods with the Green's function

e T a c nana can gitiliza o larss tmamnrs crace sm 2 snoderes

by using this algorithm. Inverse equilibrium solvers have been developed to attain
a high resolution calculation but due to the above fact, recently, such an approach
is not necessarily an indispensable one. A variety of solution methods of the Grad-
Shafranov equation is, however, still necessary because there is room for choosing
the best algorithm for different applications. Especially, it is quite probabie that
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some iterative algorithms such as the multi-grid method will be the most effective
with the advancement of parallel processing computers.

In the field of theoretical analysis of the tokamak plasma the MHD equilibrium
analysis was successfully used for the beta limit calculation concerning the beta
limit scaling, the shape optimization, identification of the second stability region of
the ballooning instability, and so on. An early stage tokamak with a circular cross
section was a low beta device, at least experimentally. But in recent tokamaks
higher beta value as more than 5% is attainable, even experimentally. For calcula-
tion of the higher beta equilibrium the FCT algorithm plays an important role. As
for the physics implication of the MHD equilibrium, self-consistent determination
of the plasma current including neoclassical current effects becomes important and
efforts are paid to the studies of equilibrium with non-ohmic current source and
equilibrium evolution by using a 1.5D tokamak transport code. This is because
current sustainment by NBI/RF-wave seems indispensable for future tokamaks and
current drive techniques are also effective for direct control of the current profile
of a confined plasma, which may be used for the stabilization of unstable MHD
modes. Study of anisotropic tokamak equilibria with or without toroidal/poloidal
flows is another important subject for such tokamak plasmas. The effects of o par-
ticles should be considered for analyses of fusion plasmas. Numerical codes for such
problems have been developed but a lot of problems remain to be analyzed.
Another important problem which has not been studied extensively up to now is
the search for an equilibrium optimized with respect to the confinement property of
the tokamak plasma. The transport process in the tokamak is governed by
anomalous ones due to electrostatic and/or electromagnetic microinstabilities.
These instabilities may be suppressed by the control of the macroscopic quantities
such as the shaping of the plasma cross section, the profiles of the density, tem-
perature, and electric current. This possibility was pointed out by several authors
but details still remain to be analyzed [247]. With the progress of tokamak
experiments large efforts are directed to develop techniques for reconstruction of the
MHD equilibrium from the experimentally measured electromagnetic data. This
kind of techniques will become more and more important in the future reactor-scale
devices where various kinds of measurement of the plasma behavior may be suf-
fered from the irradiation of fusion neutrons.

Throughout this review we assumed that a tokamak has complete axisymmetry.
We presented only a brief comment on the three-dimensional MHD equilibrium.
However, a real tokamak device is not completely axisymmetric for various
reasons, such as the existence of the rippling magnetic field. Even if a tokamak is
completely axisymmetric, the symmetry of the MHD equilibrium may be broken by
the occurrence of instabilities and equilibrium bifurcation with lower symmetry may
be observed. Such a steady state with less symmetry may, sometimes, have a strong
influence on the property of plasma confinement in a tokamak. For this kind of
problems three-dimensional equilibrium/steady-state analysis is essential, for which
the three-dimensional MHD equilibrium theory developed in stellarator research
may be effectively used.
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