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Computation of the MHD equilibrium of a tokamak plasma is reviewed as comprehen- 
sively as possible. The basic equation of this problem is the Grad- Shafranov equation. 
General remarks on this equation and related issues are, first, summarized with historicai 
survey of the MHD equilibrium solution, where some mathematical discussions on the 
numerical analysis of the problem are also presented. Distinguishing features of this problem 
are seen in treatment of the boundary condition and constraining conditions and we describe 
them in a rather detailed manner. In the main part of this review paper we present a concrete 
description on the numerical procedures of the MHD equilibrium solvers which are classified 
into two groups, that is, the real space solvers and the inverse equilibrium solvers. We also 
describe topics on more general equilibrium models, that is, the equilibrium with steady flow, 
anisotropic equilibria, equilibria with specified current sources, and equilibrium evolution. 
Brief comments on three-dimensional equilibrium solvers are also presented. As for applica- 
tion of the MHD equilibrium solvers we present only a small part. that is, beta limit optimiza- 
tion, design of external coils, analysis of positional instability, and analysis of experimentally 
obtained data from electromagnetic measurement. It is concluded that among various kinds 
of numerical solution methods we can usually find most adequate ones for the present 
problem. c 1991 Academic P:ess, Inc. 
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1. INTRODUCTION 

As the first candidate of the fusion reactor many tokamak-type devices [l-3] are 
being studied extensively. With the fusion devices becoming larger and more com- 
plicated and also with more detailed experiments being carried out needs for further 
quantiative analyses are increased. Consequently, the role of computations in the 
field of the tokamak fusion research becomes very large [4-61. In various kinds of 
computation the solution of an MHD equilibrium equation of a toroidal plasma 
(the Grad-Shafranov equation) [7, S] is necessary frequently and plays a 
fundamental role. There are a variety of MHD equilibrium codes developed 
depending on different applications. 

One of the engineering applications of the MHD equilibrium solvers is to 
calculate the external magnetic field and to design an external magnetic field coil 
system by giving a set of plasma parameters and geometrical parameters. Here the 
determination of a configuration of external conductors is the aim, and only global 
or averaged equilibrium quantities such as the total plasma current and averaged 
pressure are necessary. In such cases the requirement for accuracy of the equi- 
librium calculation is not usually so stringent but intelligibility of a numerical code 
is considered to be more essential. In applications for experimental analyses a 
plasma equilibrium is conjectured from a limited number of parameters and the 
results are utilized for further analyses of the plasma behavior. In this case a unique 
correspondence between the experimentally observed data and the input data for 
the numerical calculation is desirable. On the other hand, in theoretical analysis 
extremely high resolution is required and a wide range of variation of the 
parameters is usually considered. If one uses the equilibrium solution for the linear 
MHD stability analyses derivatives of various quantities such as current density 
and magnetic field should be obtained with a very high accuracy. A high accuracy 
calculation is pursued by using a special numerical scheme or by increasing the 
mesh number. Usually, however, in the stability calculation only the information 
inside the plasma is important and the concrete configuration of external coil 
system consistent with engineering requirements is not important. 

The above description is for a scalar pressure equilibrium without a plasma flow. 
However, tensor pressure (anisotropic pressure) and flow of a plasma should, some- 
times, be taken into account for the equilibrium analysis of an intensely heated 
plasma. In the above-described “conventional” equilibrium codes the plasma 
current distribution is given somewhat arbitrarily and consistency between the 
current distribution and a transport process is not assured generally. Therefore, an 
equilibrium code with self-consistently determined current distribution, and an 



equilibrium evolution code made of a combination of a two-d~rne~sio~a1 equ!- 
hbrium code and a one-dimensional tokamak transport code are important for 
experimental and theoretical analyses. Though the tokamak plasma is essentially 
axisymmetric, the three-dimensional feature becomes important sometimes. Three- 
dimensional codes developed for non-axisymmetric systems are usefm for :hese 
purposes. 

In this article we review the MHD equilibrium computation. of a tokamak 
piasma as comprehensively as possible. We are mainly con:err-red with namericai 

emes and algorithms for solving the GraddShafranov equation deveiope 
xvarious applications. The general MHD theory which the problenas in this articie 
are based on are described in Refs. [S-15]. In Section 2 we s-ummarize properties 
of the MHD equilibrium of a tokamak plasma and some general remarks necessary 
for the computation of the equilibrium. We also give a brief description cf 
approximate methods for the Grad--Shafranov equation based on the inverse aspec; 
ratio expansion and some mathematical remarks on the equation. in Section 3. we 
discuss the boundary conditions and the constraining conditions imposed on ;he 
Grad-Shafranov equation Here two main algorithms developed 
Grad-Shafranov equation for a tokamak plasma are described, -i.e., t 
eigenvalue method and the FCT {flux conserving tokama 
.rhe core of this review article. We describe numerical met 
solving the Grad-Shafranov equation, which are classified into two groups, i.e.. the 
real space solution methods and the inverse equilibrium methods. In this section we 
also describe a numerical method to construct 11 Eux coordinate system from a 
numerically computed equilibrium (numerical mapping). A numericai technlqur 
concerning the use of a vector processor to solve the Grad-Shafranov equation is 
aIso mentioned. Section 5 is devoted to more general eqililibrium models. These are 
equilibria with anisotropic pressure or flow, an equihbrium with self-consistent!y 
given current sources, and equilibrium evolution. Comments on the three-dimen- 
sional equilibrium solvers are also given in this section. in Section 6 we describe 
applications of the equilibrium solvers from various viewpoints. In this section 
we describe beta limit optimization, determination of ex:ernal magnetic ;i&s. 
positional instabihty analyses, and determination of tokamak equilibria frcm 
,~x~~rirne~tal~y obtained electromagnetic signals. Section 7 gix;es a summary 21-d a 
discussion. 

2. GENERAL REMARKS ON TOKAAIAK EQLJIL~B~FJM 

As described later in detail, the basic equation of the axisymmetric toroidai eq:ti- 
!ibrium is the second-order elliptic partial diflerential equation of the magnetic flux 
function +. This equation was derived independently by Grad [16], Shafranov 
[17], and Schhiter [1819 and it is called the Grad--Shafranov equation or I% 
Grad-Schltiter-Shafranov equation. Throughout this review article we call i: the 



4 TAKEDA AND TOKUDA 

Grad-Shafranov equation. The right-hand side of the Grad-Shafranov equation 
represents the plasma current and if it is a linear function of 1(1 or constant, one can 
obtain an exact analytical solution of the equation [19-211; otherwise one should 
rely on approximate solutions derived by some kind of expansion or on numerical 
solutions described in this article. In the early stage of the tokamak research, 
analytical equilbria were studied extensively. Many works in this stage are still 
important as the basis of the inverse equilibrium solvers which became powerful 
means to analyze the three-dimensional equilibrium as well as the two-dimensional 
one in 1980s. In this category of the analytical solutions two different approaches 
were generally taken. One is based on the expansion of metrics by the plasma 
radius (the near-axis expansion) [22-241 and the other is based on the expansion 
of the solution $ by the inverse aspect ratio E (delined in 2.5). The latter approach 
is further subdivided into the method based on the low beta tokamak ordering 
[25-271, and the method based on the high beta tokamak ordering [12, 15, 
28-301. 

Though several numerical equilibrium codes for other types of devices [31] were 
developed earlier, a numerical equilibrium code for the analysis of a tokamak 
plasma was first published by Callen and Dory [32]. This code solves a fixed 
boundary equilibrium of a tokamak with a circular cross section by using the FDM 
(finite difference method) on the (r, Z) rectangular mesh and the SOR (successive 
overrelaxation) algorithm. Throughout the 1970s various numerical methods were 
developed, investigated, and applied to various numerical equilibrium codes to 
solve the Grad-Shafranov equation [7, 33-381. Among them the nonlinear eigen- 
value method [7, 371, the semi-fixed boundary method [7, 381, employing the least 
square fitting of the plasma surface [7] played crucial roles in the subsequent 
progress of the equilibrium analyses. The efficient solvers based on the DCR 
(double cyclic reduction) method and the FACR (Fourier analysis cyclic reduction) 
method described later were made realizable by application of these methods. 
Numerical schemes, such as the FDM and the FEM (finite element method), the 
Green’s function method, and the expansion method were also applied to develop 
equilibrium solvers. As for the algorithms to solve the resulting matrix equations 
from the FDM discretization, initially the iterative methods such as the SOR and 
the AD1 (alternative direction implicit iteration) method [31] were favourably 
employed. Before the nonlinear eigenvalue method was established, combination of 
the ADI and the Marder-Weitzner’s three-step iteration method [34] was one of 
the most useful solution methods [39] to cope with the nonlinearity arising from 
the free-boundary equilibrium problem. Afterward, with the progress of the com- 
puter system, the direct method became more favourable and solvers based on the 
cyclic reduction methods become standard. Recently, however, iterative methods 
such as the MGM (multi-grid method) are again being used because they are 
generally more favourable than the direct method for parallel processors. Equi- 
librium codes based on the Green’s function method, in which the Green’s function 
of the Grad-Shafranov operator is directly integrated, were also developed 
[40, 411. This method is simple an intelligible. However, as it takes much 
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computing time in comparison with other more efficient codes and t 
difficulty associated with the inherent singularity, the code is not used 
present. Application of the toroidal multipolar expansion to the MH 
solvers was proposed by Feneberg and Lackner [36] and several codes were 
developed [42,43]. But they could not become widely used codes, too. The FEM 
equilibrium solvers are less efficient than the FDM solvers but they seem useful. for 
some special purposes such as the analyses of the flow equilibria [44,45]. And 
mathematically strict analysis of the solution method itself is carried out concerning 
the FEM solvers. The conformal mapping method eveloped by Goedbioed [46] 
is not also the widely used one but it is still useful for some stability problems 
because of its mathematical sophistication. 

In parallel with the development of the above-described real space equilibrium 
solvers, studies of the inverse equilibrium solutions advantageous for the subse- 
quent processing based on the flux coordinate system and for the analysis of the 
three-dimensional equilibria have been continued. 
codes are developed on the flux coordinate system mapping procedure is required 
by which various quantities are mapped from the (r, z) space to the (+, x) space in 
the flux coordinate system where 1 is a poloidal angle. The equilibrium soiution 
given by the inverse equilibrium solver is, therefore. directly used for such stability 
analyses. Several types of the inverse equilibrium solvers, i.e., the iterative metric 
methods, the direct inverse solution methods, and the methods of expansion in 
poloidal angle, were developed [47-513. But at present the numerical codes based 
on the methods of expansion in poloidal angle [SO] are used most widely among 
them for various purposes. This method was used also to develop an efficien: 
compact equilibrium solver run on a small persona! computer [52]. 

With the progress of the tokamak research interest in the high beta tokamak 
equilibria was increased in order to realize an eff%ient msion reactor. Corre- 

he FCT concept was proposed and the FCT equihbrium was studied 
y many authors [53-561. Clarke and Sigmar ;54] derived several 

fundamental relations among the equilibrium quantities in the high beta region by 
solving the integral relation for the circular cross sectional tokamak with a high 
aspect ratio under the FCT condition. This resuh was extended by Mizoguchi e? &. 
to include the case of the equilibrium with the elliptical cross section [55]. Dory 
and Peng [53] formulated the numerical procedure to solve the Grad-Shafranov 
equation under the FCT condition and obtained numerically equmbria with very 
high beta value as about 30%. Several issues concerning the bonndary conditions 
of the FCT equilibrium were discussed by Nelson 1571 and Albert [I%]. Spies 
showed that the entropy density (adiabatic pressure) p is mote appropriately lzsed 
for the expression of the FCT condition rather than the pressure p [56]. Ewing to 
these basic studies it became easy to solve the high beta tokamak equilibrium by 
the FCT algorithm, and afterward the FCT equilibrium solvers play main roles in 

alyses of a high beta tokamak [59, 601, analyses of the adiabatic 
SS], and equilibrium analyses subject to resistive diffusion [6%]. 

Typical numerical procedures are summarized in Table I. 
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TABLE I 

Summary of Numerical Procedures for Equilibrium Solution 

Issues Authors Other references 

a. Basic Contributions 

Derivation of the H. Grad and H. Rubin [16], c911 
Grad-Shafranov equation V. D. Shafranov [ 171, 

R. Liist and A. Schliiter [18] 
Low beta tokamak ordering J. M. Greene er al. 1271 [25, 261 

and inverse equilibrium 
High beta tokamak ordering H. R. Strauss [28], F. A. Hass 1291 [12, 15, 301 
Nonlinear eigenvalue formulation K. Lackner [7] [37. 48, 93-96, 98-1011 
FCT concept J. F. Clarke and D. J. Sigmar [54] 1551 
FCT algorithm R. A. Dory and Y.-K. M. Peng 1531 [S&61] 

Algorithms Authors Remarks Other references 

AD1 + three-step 
iteration 

FDM + SOR 

b. Real Space Solvers 

B. Marder and Free boundary, 
H. Weitzner 1341 old method 

J. D. Callen and Fixed boundary 
R. A. Dory [32] 

FDM + MGM 
FDM + DCR 

FEM 

B. J. Braams [ 1121 
J. L. Johnson et al. 1381 Semi-Eixed boundary with 

least square fitting 
S. Semenzato et al. [44], Equilibrium with flow 
W. Kerner and 0. Jandl [45] 

Iterative metric 
method 

Direct inverse 
method 

Expansion in 
poloidal angle 

c. Inverse Equilibrium Solvers 

J. DeLucia er al. [49] 

P. N. Vabishchevich 
et al. [47] 

L. L. Lao er al. [SO] 

Green’s function 
method 

Expansion with 
orthogonal 
functions 

Conformal 

H. Ninomiya ef al. 1401 

S. Seki e[ al. [42], 
F. Alladio et al. [43] 

J. P. Goedbloed [46] 
mapping method 

Variational moment 
method, 3D equilibrium 

d. Other Solvers 

Simple, inefficient 

Use of fast 

c391 

[31, 104-1061 

[ 107~110] 
17, 1241 

[48, 85, 861 

C481 

[511 

[52, 123, 18&183] 

c411 

Hilbert transform 



2.2. Grad-Simfranoc Equation and Mqnehc F~.LT Fur?chw~ 

The basic equations of the ideal MI39 equilibrium of a plasma with scalar 
pressure and without flow are 

i2.i i 

where 5 and are the current density and magnetic flux density. respectively, and 
ilO is the magnetic permeability of the vacuum. Throughout this review articie, we 
adopt SI units unless otherwise specified. For an axisymmetric system such as a 
lokamak plasma we can define a magnetic flux function $ from the toroidal compo 
nent of vector potential A, as 

* = -!.A,. :z i) 

y using this single scalar function II/ in a cyiindricai coordinate system (J,. z, $; 
(Fig. 2.1) the magnetic field B is represented by 

where toroidal tieid function (poloidal current function) F is expressed by using he 
toroidal field B, as 

F= rB,. ; 2.6 ; 

Then the set of the equilibrium equations, Eqs. (2.1 )P(2.3), is reduced to a secxd- 
order partial differential equation called Grad-Shafranov equation [I&IS] as 

3 7: 
‘-- , 

FIG 2.1. P. cylindrical coordinate system ir. 2, 4, ) sed fcr the equilibrium c2lculation. 
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FIG. 2.2. Region for the equilibrium calculation. Q,: plasma, 8,: vacuum, r,: plasma-vacuum 
boundary, f: computational boudnary. 

where the toroidal component of the plasma current Jb is given by 

(2.91 

The above Grad-Shafranov equation is solved in a two-dimensional region as 
shown in Fig. 2.2, where Q,, Q,, r,, and r denote the plasma region, vacuum 
region, plasmaavacuum surface, and the computational boundary. 

It is easily seen that the pressure function p and toroidal field function Fare func- 
tions of only I/. The magnetic flux function $ has an ambiguity of shift of constant 
value and, hereafter, we define the $ value at the plasma surface to be zero; inside 
the surface the value of the magnetic flux function is negative unless otherwise 

(a) (bl (c) 

FIG. 2.3. Classification of the equilibria according to topology of magnetic surfaces. (a) Separatrix 
magnetic surface is located outside the plasma. (b) Separatrix magnetic surface coincides the plasma 
surface. (c) Separatrix magnetic surface is located inside the plasma surface. 
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remarked. In the case of an axisymmetric toroidal equilibrium the structure of 
nested magnetic surfaces is clearly defined by the contours of the magnetic 4ux 
function $. From the practical viewpoint of equilibrium computation the structures 
of the magnetic surfaces are classified topologically into three groups as show-n III 
Fig. 2.3. In the case (a), the separatrix magnetic surface is outside the plasma region 
and the magnetic surfaces inside the plasma region are nested tori made of simply 
connected contours of the magnetic flux function. There is oniy one elliptic singular 
point of the magnetic flux .function inside the plasma region, which is called a. 
magnetic axis. When the separatrix magnetic surface coincides with the plasma 
surface we call it the case (b) equilibrium. In this case hyperbolic singularities 
(X-points) appear on the plasma surface and multiple: plasma equilibrium with 
several magnetic axes may be observed. This kind of con~g~ration is also founti in 
a divertor tokamak. From the viewpoint of numerical calculation difficulty lmay be 
found because some metric quantities diverge at the X-point on the separatrix and 
usually stability calculation is carried out by assuming the plasma surface is located 
just inside the separatrix, If the separatrix magnetic surfaces exist inside the plasma 
region it is classified as the case (c) equilibrium. In this case there may appear 
several magnetic axes and magnetic islands inside the plasma region. An exampie 
of this type is an equilibrium of the doublet tokamaks 1621. 

In this article we mainly describe the case (a) equilibrium. It should be noted thaf 
a finite toroidal current inside the plasma region is ueeded to realize the above equi- 
libria as the following integral of the poloida! magnetic field strength B, yiei;?s a 
finite value. 

In other words the above axisymmetrically nested magnetic surfaces cannot be 
realized by the current flowing in external coils alone. Plasma current or current rn 
internal conductors is necessary for the above axisymmetric toroidal equilibria as in 
the case of a tokamak and an RFP [63] or in the case of a multipole [64], a 
levitron 1651. and a spherator [66], respectively. 

2.3. Flux Coordinate S?.r;tem 

Plasma behaviors along the magnetic surfaces and across them are extremely 
different. It is, therefore, desirable or, sometimes, inevitable to employ a flux coor- 
dinate system [lo, 1 I] based on the contours of the magnetic flux Ftmction tc 
analyze instabilities or transport. In the previously described case (aj equilibrium 
the $ contours have a topologically same structure with concentric circles and a 
flux coordinate system similar to a toroidal coordinate system is easily defined, 

In this article we adopt a flux coordinate system ill/, 8, d), where C# is the toroidai 
angle defined in a real space and 8 is an arbitrarily chosen poloidal angle (Fig. 2.&i. 
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-- -6 

(a) lb) 

FIG. 2.3. A flux coordinate system ($, 0) used for the stability calculation: [a) An example of the 
coordinate system with straight field lines; and (b) an example of the coordinate system with constant 
arc length is presented. In both coordinate systems the coordinate in the toroidal direction is the usual 
toroidal angle. 

In general this system is a nonorthogonal coordinate system and the line element 
is given as 

d12 = gtiJ, d$‘+ 2gti, d$ d0 + g,, de2 + g,4 d$2, (2.11) 

g$$ = !fE pq2 y2 ’ g(b,= -qw .w ?&e=$ IW2, g&j = r2, (2.12) 

f= [(v~xve)mj-‘. (2.13) 

Because 8 is the angular coordinate with modulus of 2z-c the following constraint is 
imposed to the Jacobian 2, 

P 
dl 

oPiBp=2=. (2.14) 

By choosing an appropriate f we can specify a coordinate system. For example, 
the coordinate system with straight field lines, 

(2.15) 

which is often adopted for stability analyses is constructed by choosing a Jacobian 
as 

8=f,W, (2.16) 

where the safety factor q($) is detined as 

(2.17) 



Any quantity expressed as a function of only a magnetic surface label (such as the 
safety factor. the poloidal/toroidal magnetic flux functions, flux surface averages !n 
the next subsection) is called a surface quantity. 

2.4. Flus Swface Averugr 

The flux surface average (X) of a variable X is defined as 

where V( !F) is a volume inside a magnetic surface specified by an arbitrarily chosen 
label ‘P: such as, the poloidal magnetic flux IG, = j .Va dy/‘(2x)‘, the roroidaE 
magnetic flux x = 1 B .Vd dv,i(2n)2, and so on. In the following we adopt the 
poloidal flux coordinate I,// as the magnetic surface label unless otherwise specified. 
It is needless to say that a surface quantity itself is also a label of a magnetic 
surface. Many important quantities appearing in the MIID stability analyses 
[67, 681 and transport analyses [69] are represented by the flux surface average 
In the following we describe two important expressions derived by using the surface 
averaged quantities. 

First, we describe the parallel component of the plasma current and discuss 
the consequence of the quasi-neutral condition. The quasi-neutral conditicn. is 
expressed as 

div J = 0, 1’2.20) 

where 

BxVp 
J,=- B” 

From the above equations we get the divergence of the perpendicular current as 

2FSB 1 dp 
div J,= -pzs’-&. 

As dB/‘S #O in general, the divergence of the perpendicular current has a finite 
value, which means that the parallel component of the current always exists in an 
axisymmetric toroidal equilibrium. If we rewrite the expression for the current J as 
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with the coefficient K being a function of only $ 
pressure it is represented as 

K($)= -;-. 

and for the case of a scalar 

(2.25) 

After some manipulations the parallel current J,, is derived as 

(2.26) 

The current of the first term of this equation is the well-known Pfirsch-Schhiter 
current which maintains the quasi-neutral condition. This current originates from 
the charge separation due to the toroidicity. The divergence-free current of the 
second term assures the momentum balance along the magnetic lines of force and 
it is essential for confining the tokamak plasma. 

The second example of the flux surface average is the surface averaged 
Grad-Shafranov equation, which is important in relation with the FCT algorithm 
[53] and the equilibrium evolution. By averaging the Grad-Shafranov equation on 
the magnetic surface we obtain the equation 

where 

(2.27) 

(2.28) 

After integrating the equation with respect to $ we again average it over the whole 
volume, and obtain the equation 

fl,=l+Ii: cBy(:)V {2F$A+(B:)$[ln(dV’d:‘Bi)]}d$, (2.29) 
PS s 

where the suffix s denotes the values at the plasma surface and the poloidal beta /I, 
is defined as 

1 * pdV 
&=2h~ (B;),’ ! (2.30) 

From Eq. (2.29) it is shown that dF/dt+b < 0 (paramagnetic) corresponds to BP < 1 
and dF/d$ > 0 (diamagnetic) corresponds to p, > 1, because the second term of the 
integrand is a small quantity. 
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2.5. Quantities Characterizing a Tokamak Equilibrium 

in this section we summarize the quantities characterizing a tokamak plasma and 
ranges of values of these parameters. First, several geometrical parameters shouid 
be mentioned. Because the tokamak plasma is of toroidai shape there are major 
radius R, and minor radius a which characterize the size of the torus. Inverse aspect 
ratio E is defined as 

EXl. 
Ro 

(2.31: 

Usually the value of the aspect ratio E -’ is larger than 3 for a rokamak but some- 
times a very fat tokamak with a low aspect ratio as E ~ ’ 4 2 is considered. An earlier 
tokamak has a plasma cross section of a circular shape but a noncircular cross 
sectional tokamak is preferred because higher plasma current and higher beta value 
are attainable. For such a tokamak an ellipticity K and a triangularity 6 of :he 
plasma cross section are defined as shown in Fig. 2.5. The following definition of the 
noncircularity is also widely used: 

Y = R, + a cos(d - 6 sin 26), (2 32) 

7 = Ka sin 19. (2.33 ; 

When the ellipticity K is very large the plasma suffers from the vertical positional 
instability (see 6.2) and the range of the ellipticity is usuaily between 1 and 
approximately 2. 

The value of the safety factor defined by Eq. (2.17), q9 (flux q), is known orGy 
after the equilibrium is solved. Therefore a simpler definition of the safety factor, 4,) 
(current q) is often employed for the purpose of rough calculation of experimenta! 
analyses and design of a tokamak device. The current safety factor q., is defined as 

43 r 

FIG. 2.5. De6nition of the geometrical parameters of a plas,ma cross section: K, ellipticitj: 5. 
triengdaritj. 
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where B,, is the toroidal magnetic field at the plasma center R,. Practically, in 
addition to this definition, several kinds of different expressions for the current 
safety factor are defined as 

2ii*B,, 

qJ1 = R,Z,(MA)’ 
(2.35) 

2kaZB,, 

qJ2 = R,I,(MA) 
(2.36) 

where 

kE1+K2 
2 ’ 

(2.38) 

and D is the area of the cross section. It should be noted that the difference between 
the flux q and current q becomes considerably large when the cross section is 
shaped too much and/or the beta value becomes large (Fig. 2.6). The safety factor 
was originally defined as a margin to the stability limit observed at qJ = 1 in an 
early circular tokamak (Kruskal-Shafranov limit) [17, 701. But tokamaks are 
rarely operated in the parameter range with such a low value of the safety factor. 
Low q discharge with q < 2 is very difficult because of strong external kink mode 
instability. Usual experiments are carried out between q = 2 and q 8 5 or 6. 

_____.#...------- 
m__._.__... ----- 

*_______-- ------ 
_____._.__-.------ 

. . . . . . . . . . ..-.-......-..-............................................ 

I . I - I . I . I . 

q-psi 

q-J1 

. . . . . . . . . . . . q-J2 

. . ..__._____ q-J 

1.5 1.6 1.7 1.8 1.9 2.0 

Ellipticity K 

FIG. 2.6. Various definitions of the safety factor, qti, qJ, qJ,, and qJr 
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A beta value is defined as a ratio of the plasma pressure to the magnetic pressure. 
In addition to the poloidal beta defined by Eq. (2.30), beta values ,?I~. zurreni 
poloidal beta value bJ, are defined, where two different definition of the current 
poioidal betas, pJ1 and jJ2 are presented, as 

and 

-where 

/L-y. 
P 

ii.31 ) 

Under the constant plasma current condition the maximum poloidal beta ve’,x is 
limited [3, 321 as 

&pJ < 1. (2.a;) 

To characterize the current profile of “normalized internal inductance per ~lnii 
iength” I, is defined as 

The following several parameters are also often used for stability analyses, i.e.; 
shear, S: mean radius of the magnetic surface, p7 local poloidal beta, x. and average 
parallel current I,, r 

,,E!f=P!f 
q dV qdp’ 

where 

<J.B) F d;7 1 dF 
-= ‘ii- (B:) 

_----- 
(B’) dtj pod$’ 

i 2.44) 
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2.6. Integral Relation 

In this section some useful relations [71, 721 among integrals of the equilibrium 
magnetic field, plasma current, plasma pressure, and another arbitrary vector are 
derived. First the equilibrium magnetic field is decomposed into two parts, B, and 
B,, as 

B=B,+B,, (2.50) 

where 

rot B, =p,, J, (2.51) 

rot B2 = 0. (2.52) 

It should be noted that this decomposition is not unique. Next we consider the 
following vector identity which holds for arbitrarily chosen vectors, Q and A, as 

Q[rotAxA]=div (Q.A)A-GQ]+$divQ-A[(A.V)Q]. 
[ 

(2.53) 

By letting A equal B, and using Eq. (2.1) we obtain an integral of the above 
equation over the volume, including the plasma olume, as 

(2.54) 

This equation is called the integral relation [73]. As one of the examples of applica- 
tion of the integral relation, the following virial theorem is derived from the 
previous vector identity by letting B, = 0 and Q = r = re, + ze=, 

where e, and eZ are the unit vectors in the I’- and z-directions, respectively, S is an 
arbitrarily chosen surface located outside of the plasma surface where p = 0. When 
the magnetic field B is generated only by the plasma current it scales as B cc l/r3 
in the distance, which means the right-hand side of the equation vanishes in the dis- 
tance. In this way we can get an important conclusion that the plasma equilibrium 
is only attainable in the existence of external magnetic field. 

From Eq. (2.54) we can derive two important relations which are used to express 
macroscopic parameters of a confined plasma by a set of experimentally measurable 
quantities. To obtain the first relation we decompose the magnetic field B into the 
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poloidai and the toroidal components as B = B, -t B,, and carry out the integration 
of the virial theorem (Eq. (2.55)) at the plasma surface. Then the equation 

B2 B’-B2 
3p+-+= 

2Po hl 

17.54 ) \- 

is derived, where B,, is the toroidal magnetic field at the plasma surface. On the 
other hand, by ietting Q = e, in Eq. (2.54), the second relation is derived as 

vr:here the pressure at the plasma surface is assumed as p = 0, Expressing the p:asma 
surface as r = R,e, + pe, in the quasi-cylindrical coordinates (p, Q: 4) system 
(Fig. 2.7), and defining the current beta, pJ. and the diamagnetic parameter iL: as 

where A@ is the increment of the toroidal magnetic flux, we can transform rbese 
relations to the form convenient for the experimental analysis as 

l3J=p.,+S‘+d,S,. (2.60: 

~J+~ii=fs.+s2(l-~). (2.61) 

FIG. 2.7. A quasi-cylindrical coordinate system (p. :t>), 4) 
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In the above equations S, and S2 are expressed by the integrals at the plasma 
surface as 

2 1 .B2 s,=-- 
P J pe, ds, 

P& Ro 2~0 
(2.62) 

where 

2 1 
s2=-- P 3, ds 

P& Ro 2~0 ’ ’ 
(2.63 ) 

6,E 4-R, 
Ro ’ 

(2.64) 

(2.65) 

(2.66) 

and for a usual tokamak, 6, is sufficiently small in comparison with unity. When 
the plasma cross section is circular and the inverse aspect ratio E is sufficiently 
small, S, becomes nearly unity and Eq. (2.61) becomes the well-known Shafranov’s 
equilibrium relation [9, 741. Equations (2.60) and (2.61) are used for determination 
of pJ from the experimentally obtained electromagnetic signals, and usually the 
current beta, bJ, determined from Eq. (2.60) is called the “diamagnetic” current 
beta (fly) and that determined from Eq. (2.61) is called “MHD” current beta 
( /JMHD). To calculate these betas, identification of the position of the plasma surface 
an: measurement of poloidal magnetic field at the surface, diamagnetic flux, and 
the internal inductance are necessary. These issues will be described in 6.3 in detail. 

2.7. Approximation of the Grad-Shafranotl Equation 

In this subsection we describe two representative approximate solution methods 
used for calculation of the tokamak equilibrium, i.e., the low beta tokamak 
ordering and the high beta tokamak ordering. Other approximations based on, 
such as, the near-axis expansion [22-241 were preferably applied to analytical 
solution of the equilibrium in the early stage of the tokamak research but, with the 
progress of computer systems and computational techniques, large-scale numerical 
solutions have been substituted for the analytical solutions. By employing the 
inverse aspect ratio, E, as the expansion parameter we normalize the magnetic flux 
function, II/, coordinates, I’ and 2, the pressure function, p, and the toroidal field 
function, F, as 

*A+f, (OG Y’d l), (2.67 

r = R,( 1 + EX), z = R,&-v, (2.68 

p = E”B; P( !I’), F2=(R,B,)2 [~+E”&Y)], (2.69 
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where ~1 is a parameter relating to the magnetic flux function at the plasma surface: 
B, is the typical value of the toroidal magnetic field, and the following ordering of 
the magnelic field is considered: 

rB,= IVrj ~9 
a9 

{2.-K?\ 

BP z EBB. (2.71 j 

y using the above-described normalized quantities the original GradPShafran.o: 
equation is rewritten as 

where 

dG dP 1 dk 
-$g’--jp-j~y. (2.74) 

Then we expand the normalized coordinates .Y and J’ as 

.u~~~(Y,6e,=.Y’“‘(Y,6)+&.~‘~J(Y,6)i “.I (2.75) 

1’s v(Y, 6)= y”‘(Yy 6)+&y’1’(Y+ 6)+ ‘... ,‘, -“<I _ _I i-. , ic 

In order that the equilibrium equation (Eq. (2.72)) is satisfied In each order of E, 
the following two cases of rz = 2 (low beta tokamak ordering) and ,‘: = 1 (high beta 
tokamak ordering) are possible. 

(1) Low beta tokamak ordering [27, 751. In this case the beta value, 8, and 
the poloidal beta value, BP, are O(s2) and O(E’), respectively, and the following 
equations hold for the orders of so and E’, in the respective order: 

Toroidal effect is not included in the equation of O(E’) (Eq. (2.77)) and the Erst 
term of Eq. (2.78) represents the toroidal shift arising from the finite-P effect. The 
second term represents the toroidal shift due to the self-force of the plasma current. 
Above equations (Eqs. (2.77) and (2.78)) can be solved only numerically except for 
special cases such as an equilibrium of a circular cross-sectional tokamak. 
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(2) High beta tokamak ordering [28, 291. In this case /? and .sfip are 
quantities of O(E’) and O(E’), respectively, and we expand the current function 
dG/dY as 

dG dG, 7 dG, 
dy=E-+E-:+ ..., 

dY dY 
(2.79) 

from which the following equation is derived: 

F2=(RoBo)’ {l-2s[P(Y)--(1)]+2s*[G(Y)-G(l)]+ . ..}. (2.80) 

By using the above expansion, the following equations valid up to the first order 
of E are obtained: 

(2.82) 

Equation (2.81) includes only .a toroidal effect due to the plasma pressure and coin- 
cides with Eq. (2.77) in the limit of null beta. Though by the tokamak ordering a 
slightly simpler equation (Eq. (2.81)) is derived in comparison with the original 
Grad-Shafranov equation, analytical solutions can be obtained only for the func- 
tions dG,/dY and dP/dY with linear dependence on Y, and numerical calculation 
is necessary for other cases. 

2.8. Mathematical Remarks on the Grad-Shafianov Equation 

In this section we summarize some basic remarks on the mathematical aspects of 
the Grad-Shafranov equation, which are closely related to numerical solutions of 
the equation. From the mathematical viewpoint the distinctive feature of the MHD 
equilibrium problem is that this problem is often formulated as a nonlinear eigen- 
value problem with a free boundary condition. The mathematical issues to be 
clarified for such a problem are to prove existence and uniqueness of the solution 
and the error estimation of a numerical solution method. Among them, existence of 
the solution was proved by Temam [76] and Berestychi and Brtzis [77] on the 
basis of the variational approach [78,79] and by Kikuchi [SO], Rappaz [Sl 1, and 
Kikuchi et al. [82] on the basis of the principle of contraction mappings [83]. 

Existence of the equilibrium solution for a rather general case was proved 
by Temam [76]. In this case the equilibrium problem is formulated in R2 
(x= (xl, X~)E R2) as 

Lu = lf( u, x) in !2,, (2.83) 

Lu=O in R,, (2.84) 
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where the normal derivative of u, &J/&Z, is continuous on SP7 d is an unknown 
constant, I is a given constant representing the plasma current, the variable i: 
corresponds to the flux function $ with a positive value in the plasma region Gr 
and does not vanish in R,, f(~, X) =b(x)u (0 <b, <D(s) <b,: 6, and b, are 
appropriately chosen constants j, and 

For this problem, the plasma region 52, and eigenvalue I. as well as the dependent 
variable u = u(x j are to be determined. The operator L is not necessarily restricted 
to the above form and in general it is an arbitrary second-order seif-adjoint elliptir 
operator, If the function %(u, s) is given as b(.w)u, we can set d = ! without losing 
generality. Then the original problem can be reduced to the problem of finding the 
critical point of the functional, 

with the constraint 

kl(tf)=/ b [(u+ I)-]‘d.~=const, 
Q2 

where u satisfies u = 0 on r, u ~ = max( -u, 0), and A is the corresponding critcal 
value. Temam showed that k,(u) is bounded from the lower side and existence of 
the critical point of the functional k,(u) is proved by using the weak lower semi- 
continuity of k,(u) [84]. For a more general form of the function? as 

f(l,, x) = v, 
f(X,O)=oJ(X, u)>O. for li > 0. f.2.92) 

existence of the equilibrium solution is also proved by using the same variational 
method, provided the function p is bounded from both the upper and lower sides 
2s 

^ 
b,(lul~-1)~f(~,x)~b,(l1~l~+~~, I2.93 j 

with p > 1, b,, b2 > 0. Existence of the solution to the problem treated in 4.l.2 is 
assured by the above proof. 
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On the other hand, Kikuchi proved both existence and uniqueness of the equi- 
librium solution by considering a concrete procedure for application to the FEM 
formulation. In the following we summarize the results heuristically for a cylindrical 
tokamak equilibrium with f(u) = u + = max(u, 0). First, the problem is formulated 
as finding a pair of (1, U} which satisfies the following nonlinear eigenvalue 
problem in R2, 

-Au= Af(u) in Q, (2.94) 

u= -1 on r. (2.95) 

It should be noted that the trivial solution of this problem is U(S) = - 1, where the 
eigenvalue 1 is arbitrary. Next, instead of solving the above problem directly we 
consider solving the following fixed-boundary problem, that is, finding a pair 
{A,,, d} of the linear eigenvalue problem, 

-Aq5=@ in R, (2.96) 

(b=o on r. (2.97) 

There is one and only one solution of this problem which satisfies 

(44 4) = 1 and d(x) ’ 0, (2.98) 

and the corresponding eigenvalue & is simple and positive, where the inner product 
of two functions, X and Y, is defined as 

(X, Y)=j-XYds. (2.99) 

Then, by considering a transformation, 

u* = EU, (2.100) 

where E is a small positive definite parameter, the original problem is reduced to 

-Au*=&*) in 8, (2.101) 

u*= -& on I-. (2.102) 

Though we assumed that E is positive definite the above equation is meaningful 
even for E < 0. And if we set E = 0, II* = 4 becomes a solution of the above equation. 
Then, we solve the original equation starting from the solution of the linear eigen- 
value problem 4. The solution is expressed as 

u* = fj + &I) + 11’, (2.103) 

($2 4) = 07 (2.104) 

(w, qs)=O. (2.105) 
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If we consider a neighborhood of {&, 4 ), U* and ;1 can be expressed approximately 
as 4 + &iC/ and A0 + EP with very small E. In this case the problem is reduce 
a pair {p, $j which satisfies 

-A$-%,,@=pqb in RY (2.:1’;6’; 

$=-1 on r (2, ic7 j 

From the solvability condition, Eq. (2.104), the eigenvalue of ,U is given bq 

and the unique solution $ can be obtained from the above linear boundary 
problem. The equation for 11’ is given by 

From the solvability 

A concrete iteration 

-A~~-r.o~~=i.~(u*)-/Io~~*-E,~o(I, ~~$14. (2.109b 

condition, Eq. (2.105 ), the eigenvalue il is expressed as 

i=i cu*, 4)-!-4L 41 
-O (.T(u+), 4, 

(s~lla; 

procedure to determine the soiution as well as the prcol of 
convergence was given by Kikuchi et al. [IS?] as 

-~~~~~'~~~,,~~('~~~('~~(~~('~"')-/I,~~~~'~'~-~~~,(~, $jd, 
(2.112,! 

This procedure can be directly applied to analysis of the solution by finite element 
approximation [85, 861 as shown in 4.1.2. 

3. BOUNDARY CONDITIONS AND CONSTRAINING CQNDETEONS 

3.1. Boundary Conditions and Vamm Field 

T’nere are several possible ways to impose the boundary condition a: the 
plasma surface. From the practical viewpoint four types of treatments of the 
plasma-vacuum boundary are considered (Fig. 3.1 j. The simplest is the Gxeci 
boundary condition, where the plasma-vacuum boundary is replaced by a surface 
of a perfect conductor. In this case the Grad-Shafranov equation is solved only In 
the plasma region at first and the whole system including the vacuum region is 
calculated, if necessary, on the basis of the virtual casing principle by Shafranov 
and Zakharov [87], in which the external magnetic field is calculated so that the 
magnetic field is continuous at the surface [88]. Detaiis of the procedure will be 
described in 4.2 in relation to the design of the external magnetic field coils. The 
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(a) 
r 

(b) 
r 

(cl 
0 Fixed Points r 

(dl 
0 Limiter I 

FIG. 3.1. Four types of treatment of the plasma-vacuum boundary: (a) fixed boundary p’roblem; 
(b)-(d) free boundary problems of types (l)-(3). 

other three are free boundary treatments in some sense. In the first type of free 
boundary problem, the shape of the plasma surface is not known beforehand and 
the boundary values tj on r are given as was described in 2.8. In the second type 
of free boundary problem, which is also called a semi-fixed boundary problem, the 
approximate plasma shape is prescribed by giving several fixed points on rP. In the 
third type of free boundary problem, the equilibrium is solved under the given 
external magnetic field by imposing a constraint such as a fixed contact point of the 
plasma with the limiter. These four types of boundary conditions are chosen in 
correspondence with the applications. 

For the first type of free boundary problem it is convenient to introduce a form 
factor S($) which unifies the plasma and vacuum equations for the plasma and 
vacuum regions; the boundary condition on the plasma-vacuum interface is 
automatically satisfied and, if only the boundary condition on the shell or at 
infinity is given, the plasma shape is determined self-consistently. The unified 
Grad-Shafranov equation for the plasma and the vacuum regions is given as 

A”$ + S(rC/)(A2r2 + M)t,b = 0, (3.1) 
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where 

st$) = 1, for $ < 0, inside the plasma, f7 7) id.-, 

wj=o, for $ > 0, outside the plasma, c 2 (2 .d I 

and for simplicity p($) and F’($) are often expressed in terms of quadratic forms 
of $ with constan: coefficients. The boundary condition on the conducting sheii 
surface is 

$ = C(const ), (3.4) 

from the condition that the normal component of the magnetic field vanishes there. 
As in present day tokamaks the role of the external control magnetic field is impor- 
tant to maintain the MHD equilibrium in comparison with the conducting she:;, 
this kind of equilibrium solver becomes less important, except for its interesting 
mathematical properties as shown in 2.8. 

Next we describe how to determine the external magnetic field for the second 
type of free boundary problem. In this type of free boundary treatment, the total 
magnetic flux, $, i.e., the sum of the flux due to the plasma contribution $, and 
that of the vacuum contribution I,/J&,, is determined iteratively by adjusting the 
vacuum flux r/fL,. Moreover, in this type and also in the third type, the problem in 
the original infinite computational domain is transformed into a Dirichlet boundary 
value problem in a rectangular domain by using the Green’s function of the 
Grad-Shafranov operator A* (the Green’s function formulation) [7, 37, 381. The 

0 0 0 0 
Computational 
Domain 

Fixed Points 

0 0 cl 0 
External Coils 

FIG. 3.2. A ccmputational domain, and fixed points for the second type free boundary problem 
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poloidal flux tiP(rO, zO) produced by the plasma current j, at the point (r,,, zO) on 
the boundary of the computational domain (Fig. 3.2) is given by the Green’s 
function formula as 

(3.5) 

where Ic/(r, z) is composed of the magnetic fluxes due to the plasma current and the 
external current as 

$(r, z) = tip(r, 2) + $ [,(I; 2). (3.6) 

In the above equation, G(r, z; ro, z. ) is the Green’s function of the Grad-Shafranov 
operator given as 

G(r,z;r,,z,)= -- ;;yF$ [(2-k’)K(k)-ZE(k)], (3.7) 

k’ = 4rro 
(r + ro)2 + (z - z~)~’ (3.8) 

where K(k) and E(k) are the first and the second complete elliptic integrals, 
respectively. In this way the value of the magnetic flux $ on the boundary of the 
computational domain is given as 

rl/(r o, zoj = $JrO, zo) + ti c4ro, zo). (3.9) 

For this process it is convenient to decompose the vacuum contribution tiV into J 
multipolar components I& 

J-1 

Iclv= C a,*G, 

j=O 

(3.10) 

and the coefficients a,‘s are determined so that the $ =0 contour contains the J 
prescribed fixed points as 

J-1 

$,(rf, zf) + C a,* L-(9,, z,.) = 0. 
j=O 

(3.11) 

The main advantage of this method is that the problem is reduced to a Dirichlet 
boundary value problem in a rectangular computational domain, which can be 
solved easily by applying rapid direct solvers such as the DCR (double cyclic reduc- 
tion method) and the FACR (Fourier analysis cyclic reduction method), described 
later. The basis functions of the multipolar components t+k{,‘s are derived by using 
linear combinations of the vacuum solution represented by the associated Legendre 
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yl= Iye = Jyqwrs 
we: Externai Field 
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Solve G-S Equation as 
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~0: fixed 

1 

Fir,. 3.3. Flow diagram of the type-2 free boundary calculatioa. 

functions. The flow diagram for this process is shown in Fig. 32. The concrete 
forms of the multipole solution up to n = 5 components are shown as 

I);, = 1, (3.12) 

(3.13 
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$“, = - & [r56 _; (3r’ - 2R;) r54 
0 

+~(r2-R~)2r’-~(r2-R~)” , 
1 

“s=$&[ 
0 

r’+;(2r2-R;)r2Z” + ‘8’ (2r’ - Ri)(r’ - Ri) r2z4 

-~(r’-R:)3r2;2+~(r2-R:)5 . 1 

(3.16) 

This kind of expression becomes extremely complicated as the number of com- 
ponents J increases. Therefore, magnetic fields by an appropriately chosen set of 
coils are more easily used as the basis functions in the case of a tokamak with a 
strongly shaped cross section. When the coil system is approximated by a set of lila- 
ment currents the flux $ r, in the computational domain produced by a unit current 
flowing in a coil at (r,, zr ) is derived by solving the boundary value problem, 

A*Ic/=O, for the current outside the domain, (3.18) 

A*$ = ,uor 6(r - Y,) S(Z -z,), for the current inside the domain, (3.19) 

where 

$o(ro, zo) = poG(ro, zo; rc, ~~1. (3.20) 

By this kind of boundary condition, the approximate plasma shape is prescribed as 
a set of input parameters. Generally it is very convenient to analyze the plasma 
properties for the given conditions and this boundary condition is preferred for 
theoretical stability analyses. It should, however, be noted that this type of problem 
is an ill-posed one and it is rather difficult to calculate an equilibrium with 
an extremely shaped cross section or with a separatrix at the plasma surface. To 
cope with this difficulty, modification of this method based on the least square 
method is often effective [38]. In this method the coil current Ij’s are obtained by 
minimizing an appropriately chosen object function such as 

where N and A4 are the number of fixed points and the number of independent coils 
(usually N > M). The regularization parameter y is introduced to stabilize the 
procedure against large unreal oscillations of the current 1;s. The last term can be 
used to constrain the total current in all the coils to zero. 

On the other hand, the third type of free boundary problem often appears in an 
actual experimental situation when one wishes to conjecture the realized equi- 
librium for a given magnetic field and limiter position because the shape of the 
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External Fields & 
Plasma Parameters 

FIG. 3.4. Flow diagram of the type-3 free boundary calmculation [WI. The major loop which 
modifies a reference position R, “’ in accordance with the vacuum field dB, is added to the minor 
iteration loop. 

0 '2 4 6 8 1012 

ITERATION CYCLE OF MAJOR LOOP m 

(b! 

1ob"'1 -81 l"','i 
0 2 4 6 3 10 12 

ITERBTION CYCLE OF MfiJOR LOOP m 

FIG. 3.5. An example of convergence curve for the type-3 free bwndary calculation [Sf;]. The 
reference position and convergence are shown as functions of the iteration. number of the major loop 
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plasma cross section is not prescribed. In this type of boundary condition, however, 
the standard iteration scheme fails to calculate the equilibrium when the constraint 
is given by an outboard limiter L36]. During iterations the plasma expands or 
shrinks infinitely in correspondence with the larger or smaller initial plasma radii 
compared with the equilibrium one. To overcome this difficulty several ideas 
[89,90] were proposed and successfully applied to actual problems. One of the 
ideas to suppress this numerical instability is to stop the plasma movement by 
applying a virtual magnetic field during the iteration and to bring the plasma into 
a equilibrium state by decreasing the virtual field. The flow diagram of this 
algorithm and an example of the convergence curve are shown in Figs. 3.4 and 3.5, 
respectively [X9]. 

3.2. Nonlinear Eigenoalue Problem 

In general a careful treatment is required to solve the Grad-Shafranov equation 
as it includes two differentiation operators V and d/d$ defined in the two different 
spaces [91]. For this purpose two kinds of formulations dependent on constraining 
conditions are possible. One is the nonlinear eigenvalue problem in which the func- 
tional forms of pressure p($) and toroidal field function Fill/) are prescribed and the 
absolute value of them are determined from the eigenvalue of the system [7, 331. 
The other is the flux conserving tokamak (FCT) equilibrium, where the problem is 
formulated so that the magnetic flux $ is conserved and the safety factor profile 
q(tj) is also given 153, 56, 58, 59, 921. In this subsection we describe the formula- 
tion of the nonlinear eigenvalue problem. 

We rewrite the Grad-Shafranov equation (Eq. (2.7)), as the nonlinear eigenvalue 
problem 

A *II, = U-t+, 1.h (3.22) 
where 

.f(ll/) = PoYJ+o = PorJ& (3.23) 

First, the above equation is solved with some appropriate numerical method and 
eigenvalue A is obtained. In this calculation the variable range of $ is fixed as 
[ - 1, 0] in the plasma and the following iteration scheme is adopted: 

(1) Prepare initial values, tj”, Lo; 
(2) Solve the following equation for $“+I, 

+ ,Z+l=A*-l~” f (V, r); (3.24) 

(3) Normalize the $ values by the value at the magnetic axis and obtain 
(n + 1)th eigenvalue A”+ ‘, 

(3.25) 

(4) Repeat the above iteration procedure. 
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In the above calculation the range of the variable $ is restricted within [ - i, ill 
and it is necessary to transform the variable into an appropriate range if the phys:- 
cal quantities, such as the total plasma current, maximum plasma pressure, etc., are 
to be adjusted to the prescribed values. For this purpose the following scaling o: 
equilibrium quantities is carried out: 

where the quantities with hats are new quantities and G is the scaling factor. If cne 
wishes to adjust the total plasma current with the prescribed current I,? the scahng 
factor 5 is calculated as 

It is easily seen from Eq. (3.26) that there are several iteration processes equivalent 
to the above one, e.g., an iteration under the constraint of constant current instea.d 
of the constant range of the $I variation adopted in the above iteration [36]. 

From a practical viewpoint the convergence of the above iteration procedure of 
the nonlinear eigenvalue problem is very good and it is used widely for various 
applications. Detailed mathematical discussions on this problem are given m 
Ref. [93-961. 

3.3. FCT Equilibrium and GDE 

In contrast with the nonlinear eigenvalue approach, where the functional forms 
of I and F(I)) are given beforehand, in the FCT equilibrium approach the safety 
factor q($) and adiabatic pressure ,M($) defined in the following equation are given 
to solve the Grad-Shafranov equation 

3.28 ) 

where ; is the ratio of specific heats. The FCT equilibrium was devised to attain a 
higher beta state. As shown in Eq. (2.44) the maximum beta value of a tokamak 
plasma is determined by an equilibrium beta limit when the pressure is raised under 
the fixed plasma current condition. Shafranov [97] suggested that the limit wi!! be 
overcome by appropriately adjusting the plasma current distribution, which was 
numerically demonstrated by Peng et al. [92]. As the equilibrium beta limit 
is imposed by the condition that the topological structure of the magnetic 
surfaces should be conserved, a high beta tokamak equilibrium can be obtained by 
calculating an equilibrium sequence with a constant a-protile, i.e.. with conserved 



32 TAKEDA AND TOKUDA 

toroidal and poloidal magnetic fluxes (FCT: flux conserving tokamak). By 
assuming a high beta tokamak ordering for the equilibrium of this sequence some 
asymptotic scaling laws among the normalized plasma current fP, total beta Bt, 
poloidal beta BP, current beta flJI, safety factor at the plasma surface qs, and 
inverse aspect ratio E are given [54] as 

l/3 

+ const, (3.29) 

Pr 7 

E&Z - 

( ) 

E 9, 

2,‘3 + const 

> 

where 

(3.32) 

By a numerical solution without any assumption the above approximate scaling 
laws are modified a little as shown in Fig. 3.6. There is a limit at fiJ - E ~-I, whereas 
the total beta has no limit up to p, z 1 when the plasma pressure is raised in an 
appropriate manner. Concrete expressions of the Grad-Shafranov equation for the 
FCT equilibrium are derived as follows. 

By using q, p, and V the Grad-Shafranov equation is rewritten as follows: 

The left-hand side of the equation has the elliptic partial differential operator for the 
function $(I’, Z) and the right-hand side has the second order ordinary differential 
operator. This kind of equation is called the “generalized differential equation” 
(GDE) [91]. There are various kinds of solution methods devised for the above 
equation and the following method is convenient for solution of the equilibrium of 
a tokamak plasma. First, we derive an equilibrium equation (Eq. (2.27)) by taking 
an average of the Grad-Shafranov equation on a magnetic surface, and from this 
equation the ordinary differential equation of F(tj), 

is obtained, where 

D= 
vAk + (A/27r)” /iFY - 2 

vAK+ yp(A/2n)” FY.-2 + A’ 

(3.34) 

(2.35) 



0.c 

0.2 0.4 0.6 0.8 1 .o 1.2 1.4 1.6 1.8 2.G 

FIG. 3.6. Scaling laws of I, and fiJ with fi, for the FCT sequence. 
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1 ,r = - 
472q’ 

T=4712q 
A f 

(3.38) 

and the dot denotes the differentiation with respect to $. The present problem is to 
solve this equation under the boundary condition, $( V= 0) = 0, and $( V= V,) = 
tiS = const. It should be noted, however, that the magnetic surface $(r, z) should be 
determined beforehand in order to perform the surface integrals contained in A and 
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FIG. 3.7. Flow diagram for an FCT equilibrium solver. 
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K. For this purpose Eq. (3.34) should be solved iteratively with the originai 
Grad-Shafranov equation as shown in the flow chart (Fig. 3.7). The above proce- 
dure is used for solving the equilibrium inside the plasma. When the equilirium is 
extended to the vacuum region it should be noted that the toroidai magnefic field 
strength increases at the plasma surface with raising the plasma pressure. As a 
natural consequence, skin current appears at the surface to cancel the jump of the 
vacuum toroidal magnetic field, which is unrealistic, or to increase the plasma 
volume and decrease the surface magnetic field (Fig. 3.8). The incremenr of the 
plasma volume obeys the following scaling law in the case of a circular cross.- 
sectional tokamak: 

6V 1 -=- 
v 2 B. (3.39 j 

Therefore, the numerical procedure should be carefuhy constructed to remove rhis 
skin current when one solves a free boundary equilibrium under the FCT condition 

beta-t 

FIG. 3.8. increase of the plasma volume with raising the beta vaiue for a free bo>nciai> 
calcuiaticn. 

FCT 
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4. NUMERICAL METHODS FOR INVERSION OF GRAWSHAFRANOV OPERATOR 

4.1. Real Space Solution Method 

4.1.1. Finite Difference Method 

A lot of equilibrium solvers have been developed on the basis of the finite dif- 
ference method (FDM). Regular rectangular meshes with a five-points difference 
formula are usually employed for the finite difference discretization of these equi- 
librium solvers and the distinction of a solver is mainly displayed in the algorithms 
to solve the resulting simultaneous linear equations rather than in the discretization 
schemes. From this viewpoint we classify the FDM equilibrium solvers according 
to the algorithms into those based on the direct methods and the iterative methods, 
and we describe in detail the cyclic reduction methods and the multigrid method as 
the representative algorithms of the direct methods and the iterative methods, 
respectively. 

(1) The direct solution method. In principle, various direct methods can be 
used to develop equilibrium solvers with the finite difference discretization. 
However, the cyclic reduction method overwhelmed other direct methods of the 
FDM formalism and it became one of the standard algorithms for the MHD equi- 
librium codes [38, 981. The reasons are: first, this is a very efficient algorithm; 
second, a large memory space becomes available in a present-day computer; and 
third, because of good feedback control of a tokamak plasma it is not always 
necessary to solve a pure free boundary problem but it is sufficient, in many cases, 
to solve a semi-fixed boundary problem to which the cyclic reduction method is 
easily applicable. The cyclic reduction methods are described in a fairly detailed 
manner by Hackney [99] and Christiansen and Hackney [loo]. Embodiment of 
the cyclic reduction methods as the algorithms for the equilibrium solvers was 
carried out by many authors [38, 981 on the basis of the double cyclic reduction 
(DCR) method by Buneman [loll and the Fourier analysis cyclic reduction 
(FACR) method by Hackney [99]. Although both the DCR and the FACR 
algorithms were originally designed to invert the Laplacian, A, efficiently, here 
we give a detailed description of algorithms for inversion of the Grad-Shafranov 
operator, A*. 

We consider a rectangular mesh with constant spacing Ar in the r-direction and 
dz in the z-direction. Each mesh point is labeled by the mesh numbers i = 0, 1, 
2 , ..., M, andj= 0, 1, 2, . . . . N, in the r- and z-directions, respectively, where M and 
N are chosen as the power of 2, i.e., A4 = 2” and N= 2”. It was a stringent con- 
straint when one solved an equilibrium on a small computer but recently it is not 
so serious because one can solve a large-scale problem by a large computer system. 
The Grad-Shafranov equation (Eq. (2.7)) is discretized on this mesh by a five- 
points formula as 

*i~l.i-2*i,i+~i+1~j+~~i-~,i-~i+L,j+~i,j-~12~i,i+~i,ifL=g,, 

W-j2 2Ar 2 L,J’ (4.1) rj (AZ) 
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where $i.i = $(ri, z~) and gi.i E g(ri, zi). In the following discussion we assume that 
+ values at the boundary are given beforehand (the Dirichlet boundary condition). 
By introducing vectors, d.fs, defined as 

the vector equations 

dj-lpB4j++j+l=P,, j= 1, . ..) 

are derived from Eq. (4.1), where B and pi are a tridiagonal matrix (M+ 1) x (W+- Z ) 
and a vector with (M+ 1) elements, respectively, defined as 

By using the above representations we, next, consider the DC algorithm. 
Because the Grad-Shafranov operator is uniform in the z-direction as the nsua! 
Lapiacian and consequently the matrix B is independent of the index j, we can 
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apply cyclically the odd/even reduction with respect to the index j. After ( reduc 
tions the vector equations (Eq. (4.3)) are reduced to the equations 

dji-:, - B”‘& +(d,,+?i = ,. -5 :a,/ I 

In the above equation the matrix B”’ and the vect 

Bl’j= [B(~~lJ]:-21=(B(/~l)-~~~ii(~f’~:’+~~Zf). ii..8 ; 

p;” = P.;!~;?, + B”- lip,ff ~ ” + iL.9 i 

dj-2/=(Bi’))-’ [&/+~+#~-p;“~i]. {4.1ci) 

d-;+2: = (B”‘)-’ [di +q5j+2/+~ - i4.i: I 

where i is the (M+ 1) x (M+ 1) unit matrix. Finally, the vector equations 
(Eq. (4.7)) are reduced to a single vector equation as 

$0 - B’L’c#, : + d,v = p!,:; (L=log,?J-l=Il-1). 

where 

(4.13 

are given as the boundary condition. The solution of Eq. (4.12) is derived as 

q5*\:“= LB{‘-“]--I [&+q5.\ - (4.14) 

In the above equations it should be noted that the matrix B”’ is not tridiagonal 
although the initial matrix B (‘) - B (Eq. (4.4)) is a tridiagonal matrix. However. the - 
final B-matrix, B’“- I), as well as B” j in Eq. (4.11), is easily factorized as 

B’“~“=(B-b,I)(B+b,I)..,(tT-b,,_,i)(bfb,,~,li, (4. :5) 

where each elementary matrix: B, - bkI, is tridiagonal. Therefore, the simultaneous 
linear equations (Eq. (4.14)) can be solved by n - 1 mversions of the tridiagonal 
matrices, which is carried out by the one-dimensional cyclic reduction. Ir. the case 
of the Grad-Shafranov equation, however, off-diagonal e!ements of the above: 
elementary tridiagonal matrix are not constant and it is not so advantageous 
to apply the cyclic reduction to the solution in the r-direction. Solutions or” the 
other vectors are synthesized by using Eqs. (4.10) and (4.11). It s 
that, during the construction of the matrices, B”‘, overflow will occur, But it can 
be overcome by changing the recurrence relation (Eq. (4.5)) to one that is 
algebraically equivalent, with multiplication by the inverse of the B’!‘-matrices. 
which brings about underflow in place of the overflow [55]. 
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As for the FACR method, we express the flux function at the mesh point i//i,-, by 
the finite Fourier series in the z-direction as 

For the usual Laplacian operator the cyclic reduction can be applied efficiently in 
both the r- and the z-directions, and application of the odd/even reduction before 
the Fourier analysis reduces the count of the numerical operations considerably. In 
the case of the Grad-Shafranov operator, however, good efficiency of the cyclic 
reduction method is exhibited only in the s-direction and the Fourier analysis is 
applied to the solution directly from the beginning. y substituting the above 
Fourier series into Eq. (4.7) we obtain 

6n the original FACR algorithm Eq. (4.17) is solved by the cyclic reduction metho 
which is extremely advantageous in the case of the usual Laplacian operator, For 
the Grad-Shafranov equation, however, necessary counts of the numerical opera- 
tions to solve Eq. (4.17) are about the same among the cyclic reduction method, the 
method of recursive formula [ 1021, and the LU decomposition method [ie3]. 
because all the matrix elements are to be calculated at each step. As for the zom- 
parison between the DCR and the FACR methods the above situation is no? 
altered. But in a large computer the FACR program is more preferable because it 
is not necessary to save the memory space so tightly and, moreover. high vector 
efficiency is difficult to attain for the DCR program in comparison with the FACR 
program. This issue will be discussed in 4.4. 

(2) The iteratioe solution method. As the direct solution methods of the “linear 
equations have been well developed to a sophisticated levei and farther deve!op- 
ment seems difficult. some good iterative methods were looked for. Detai!ed 
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descriptions of representative classical iterative methods such as the SOR method, 
the AD1 method, and the CG (conjugate gradient) method are found in 
monographs and review papers [ 1041061. In the equilibrium solvers of the early 
stage of tokamak research such kinds of numerical methods were often used (e.g., 
[31, 321) but recently these are not considered to be efficient for the purpose. 
However, the progress of computers in the fields of vector and parallel processors 
again stimulated the investigation of the iterative methods because the iterative 
algorithms are more easily adaptable to vector or parallel processors than direct 
methods. In general the iterative procedure [104] to solve a simultaneous linear 
equation, 

Au=f, (4.25) 

is represented by the iteration of the equation, 

Su@+ 1) = Tub) + f, (4.26) 

where the matrix A is divided into two matrices as 

A=S-T. (4.27) 

The error of the solution, e’“’ E II(“) - u, develops as 

e’” + 1) = Mel”‘, (4.28) 

where 

M=SplT. (4.29) 

From the above equations criteria to design an efficient iterative algorithm is sum- 
marized as: (1) S-’ should be calculated as easily as possible and (2) the spectral 
radius, p(M), of the matrix M should be as small as possible in comparison with 
unity, where p(M) is the maximum of the absolute values of the eigenvalues of the 
matrix M. In order to meet the above antipodal requirements the multi-grid 
method (MGM) was devised and applied to the solution of various linear problems 
[107-1101. This method can be applied not only to the linear equations but also 
to singular equations and eigenvalue problems [ 110, 1111. 

The basic idea of the MGM algorithm is that, by choosing an appropriate simple 
iterative procedure, the eigenvalues of A for the short wavelength modes are made 
relatively small and converge rapidly enough for a given mesh resolution, and the 
rapid convergence of eigenvalues of longer wavelength modes (smoother modes) 
can be attained by the subsequent choice of coarser meshes. According to the above 
basic idea, the calculation of the MGM algorithm is carried out at each level from 
the level I= L with the finest mesh to the level I= 0 with the coarsest mesh 
(smoothing and restriction processes) and afterward the calculated data are 
transferred from the lower levels to the higher levels (prolongation process). To be 



MHD EQUILIBRIUM OF TQKAMAK PLASMA 4i 

more precise on the process at the level I, first we consider the l-level equation of 
the vector uI, 

A,u, = f,. (4.X) 

Then, by the simple iteration method, e.g., the Ciauss+Seidel method, we solve t 
above equation and obtain an approximate solutin. U,, which is called t 
“smoothing” process, because this process derives a lower level equation for a. 
smoother solution. Thus the (i - 1 )-level equation is given as 

A,-,u,-,=f,-,, (4.31 ! 

by calculating the I-level defect, d,, and introducing the restriction operator, 

d, = A,U, - f,, (4.32 ) 

f [- I= Rd,, (4.33; 

where “restriction,” R, means to get data on the (I- 1 j-level mesh from the data on 

FIG. 4.1. Flow diagram of the MGM a!ghthm 
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the I-level mesh. On the other hand, “prolongation,” P, is the interpolation process 
from the data, U,- i, on the coarser mesh to the data, w,, on the liner mesh as 

WI =Pu,&,. (4.34) 

After the lower level solution U,- i is transferred and prolonged, the l-level solution 
is constructed as 

u, = u yd) - WI. (4.35) 

If it is necessary, the smoothing process is repeated for K times in each level before 
the solution is transferred to the higher level. The MGM cycles with K= 1 and 
K= 2 are called V-cycle and W-cycle, respectively. The flow diagram of the MGM 
algorithm is shown in Fig. 4.1. In order to visualize the recursive operations among 
the levels, the path diagrams of the MGM algorithm for two cases with L = 4 and 
K= 1, 2 are shown in Fig. 4.2. 

There are a few examples of the application of the MGM algorithm to the MHD 
equilibrium solvers. Braams developed an axisymmetric MHD equilibrium code 
and gave some speculations on the application of the MGM algorithm to the 
problems on axisymmetric equilibrium solver in the inverse coordinate system and 
the three-dimensional equilibrium calculations [ 1121. As for the axisymmetric equi- 
librium problem in the usual coordinate system the author succeeded in developing 
an effkient code which is about three times faster than a code with the well 
optimized Buneman algorithm. Real-time interpretation and control of an experi- 
ment on a time scale of about 10 ms or less were expected to be a promising 

Level 

4 s 
. . . . ..~...... . . . ..___._.._..... T 

P a 

FIG. 4.2. Path diagrams of the MGM algorithm for L = 4 and K= 1 (a) and 2 (b). 
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application field of the MGM equilibrium code. The author speculated that the 
MGM algorithm plays an important role in development of the inverse equilibri:lm 
solver because there are no competing algorithms as the DCR algorithm in the case 
of the real-space equilibrium solvers. Application of the MGM algorithm to the 
three-dimensional equilibrium problem has been initiated y the a&or but 
satisfactory results have not been reported yet and the development of appropriate 
adaptive method to adjust the grid to the magnetic configuration is required before 
the MGM algorithm is fully utilized for this problem. 

4.1.2. Finite E!fwzent Method 

When one solves a system with a complicated geometrical shape the fi~ire 
e!emen: method is more advantageous than the finite difference method DecaTdse of 
the flexibility of choice of a mesh shape. In contrast with this advantage the matrix 
generated by the finite element method is, generally, more dense and more 
arithmetic operations are required to calculate the matrix elements in comparison 
with the finite difference method. From the viewpoint of the geometrical shape the 
computational object of MHD equilibrium in a fusion device is extremely simple 
among the engineering calculations and one cannot, usually, take advanrage of the 
finite element method in the calculation of MHD equilibrium. For limited problems 

Frc. 1.3. An example of the FEM mesh structure for an equilibrium calculation 
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of MHD equilibrium the finite element method is more advantageous than the 
finite difference method. Examples of these cases are the inverse equilibrium solver 
and some other applications where information on the magnetic flux surfaces 
should be explicitly used during the calculation process, such as the analyses of 
MHD equilibrium with flow. In the following we describe the finite element for- 
mulation of the MHD equilibrium problem and some related topics. To define the 
problem clearly we treat the nonlinear eigenvalue problem described in Section 3.2. 
First we derive the objective function of the finite element formalism as a weak form 
of Eq. (3.24) as 

L($“f’)= (A*$“+‘, v+lj-4fw)~ tin+?, (4.36) 

f(P) = -~“Po J,d -V/$;;). (4.37) 

By executing a partial integration the objective function L($) is rewritten as 

By using an appropriate set of linear basis functions, the functional L is represented 
by N parameters ($‘;+I, $‘;+‘, . . . . $;t”‘), where N is the number of nodes (Fig. 4.3). 
Simultaneous linear equations with respect to #r” are immediately derived as 

ASf,fl+l=B” 2 (4.39) 

(4.40) 

where the matrix A and vector B” are derived according to the standard procedure 
of the FEM formulation. 

There are several possibilities for the choice of the expansion of the function $ 
and the finite elements. Usual choice of two-dimensional fintie elements for the 
MHD equilibrium calculation of the plasma are 3-node triangular and 4-node 
rectangular elements with linear and bilinear basis functions (Fig. 4.4), respectively, 
which were employed by Takeda and Tsunematsu for the SELENE code [48]. 
Application of 8-node isoparametric elements (Fig. 4.5) to the problem of flow equi- 
librium instead of the 4-node elements was carried out by Kerner and Jandl [45]. 
In this code a technique for storing the stiffness matrix and solving the system of 
linear equation is used where only the non-zero elements are processed. They found 
no remarkable difference under the same computational condition between the 
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0 I 0 
t 

FIG. 4.4. Triangular and rectangular elements with linear and bilinear basis functiom. respectively. 
and corresponding isoparametric transformations: (a) a triangciar element; t b I a rectangular element. 

4-node (bilinear) elements and the 8-node (biquadratic) elements. Also the effect of 
the mesh rearrangement was investigated and it was concluded that the mesh 
rearrangement causes an interpolation error but finally a set of suf~cie~tly accurate 
magnetic surfaces is recovered (Fig. 4.6). By assuming that a 21 x 21 finite elemenr 
net is sufficient for most applications they estimated that accurate solution is com- 
puted after 20 iterations in 5 to 10 s of Cray 1 CPU time. Another extension of the 
method is to employ higher order elements. By using a higher order basis futrction, 
such as those by Felippa [113] and by Melosh [I 141 one can obtain directly the 
derivatives of the magnetic flux function, d$/Sr and S$,‘Sz as well as the function 
$ itself. If one uses a linear basis function for a triangular element and combination 

FIG. 4.5. Hsoparametric mapping between the local and globs1 s:vstems for the &node rectanguia: 
element 1453. 
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FIG. 4.6. An example of the convergence curves of the FEM code by Kerner and Jandl [45]. The 
steep curve is for the case without the mesh rearrangement. 

of a bilinear basis function and isoparametric transformation for the rectangular 
element the solution becomes continuous on the edges of the elements. On the other 
hand, for the higher order elements not only the derivatives, a$/& and a$/& but 
also the flux function rj, can be made continuous on the edge of the elements. 

The FEM solution of the first type of free boundary problem was formulated by 
Kikuchi [80] with mathematical strictness. The procedure is described for the 
model equations (2.94) and (2.95) (see [86] for the more general case), as follows: 
Let Xi be a set of piecewise linear polynomial functions 24h such that ~1~ = 0 on r 
(II: the maximum length of finite elements in I?*). In this functional space 
approximation of the weak form (Eqs. (2.94) and (2.95)) given by 

(h, vh) =Ah(f(uh), l’h)r VV,EX;, (4.43 ) 

u,, + 1 E x;, (4.44) 

where 

(4.45) 

The corresponding linear equation (Eqs. (2.96) and (2.97)) are also approximately 
expressed by the equations 

vv, E x; (4.46) 

(4.47) 



MHD EQUILIBRIUM OF TOKAMAK PLASMA 47 

which have a simple eigenvalue i,t, > 0 and a unique solution dl, > 0. From 
Eqs. (2.101) to (,2.162), the equation for ut is derived as 

(U /T, \‘h > = w=b~h* b, l:,rJ. 

11; + E E x;, 

The solution li//, of Eq. (4.53) can be obtained from the linear algebraic equation. 
The iteration of Eqs. (4.54) and (4.55) is contracting, and pi,* derived from Eq. (4.50) 
gives the unique solution of Eq. (4.43) for sufficiently small Ial which correspon.ds 
to an approximate solution of Eqs. (2.93) and (2.94) for sufficiently small k. 

4.1.3. Other Methods 

In this subsection we describe three numerical methods which cannot be classified 
within the previously described framework. As for the Green’s function method and 
the expansion method with orthogonal functions we present only brief descriptions 
because at present they are replaced by more efficient methods. And we describe the 
conformal mapping method in a rather detailed manner. 

(1) Green’s ,function method. The Grad-Shafranov equation, Eq. i3.22 ), is 
formally transformed into an integral equation, 

T’ne concrete form of the above integral equation is given by using the Green*? 
function of a ring current as 
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where the Green’s function G(r, z; r’ , z’) is given in 3.1. The equilibrium solver 
based on the Green’s function is written according to the following numerical 
procedure [40, 41, 1151: (1) set initial values to mesh points (ri, zi); (2) calculate 
plasma current density Jd,ii at each mesh point; (3) iterate the eigenvalue appearing 
in the right-hand side of the Grad-Shafranov equation (the nonlinear eigenvalue 
problem) under the condition of constant total plasma current; (4) calculate $ solu- 
tion at the (n + 1)th step, $i,B I. using Eq. (4.56); (5) check convergence by com- 
paring $.;,i, and $;,$I; (6) repeat the above process if not converged. This method 
is very sample and Intelligible. The magnetic fields due to the plasma current and 
the external coil current are clearly separated, which is advantageous for the 
engineering applications. On the other hand, generally, it takes much computing 
time in comparison with other more efficient codes and one cannot attain a solution 
with higher resolution because of the appearance of dense singularities. 

(2) Expansion with orthogonal functions. MHD equilibrium calculation based 
on toroidal multipolar expansion was first proposed by Feneberg and Lackner 
[36] and the scheme was tested for various plasma configuration with force-free 
equilibria with a simple sharp boundary distribution of volume currents. A numeri- 
cal equilibrium code SPHEX using this method was reported in detail by Seki et 
al. [42] which is applicable to more general current profile. First, the magnetic flux 
function $ is expressed by a sum of the flux function due to the plasma current $p 
and the vacuum magnetic flux function $0 due to the external coil currents. Then 
the Grad-Shafranov equation (Eq. (2.7)) is rewritten as 

A*$, = St*, + Iclo) .J’(r, Ic/, + Iclo), (4.58) 

where the form factor S defined by Eqs. (3.2) and (3.3) is used and 

f(r, $p + $d = -porJ4(r, tip + rcld. (4.59) 

Then the flux function $, is expanded by a set of the associated Legendre functions 
of the first type PA(x) and by using the orthogonality condition the 
Grad-Shafranov equation is transformed into the equation which determines the 
coefficients of the expansion. Solving the equation we can easily derive the final 
solution as 

s 
r - rpn p “+Ig (p) dp \/ca-qX) ,, 1 II 7 (4.60) 

0 

2n + 1 ’ 
g,(r) = 

2n(n+ 1) s 
P:,(x)S(~,+~,,).f(rJI~,II/,+~o)d.w. (4.61) 

-I Jn 

As the right-hand side of the equation contains II/, one must solve this equation 
iteratively in order to obtain the equilibrium solution. 
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.4lladio and Crisanti [43] developed an equlibrium solver based on the torcidal 
multipolar expansion in the fully toroidal coordinate system (9, 8. CJ!I) [ 1 ia]. The 
method is advantageous especially when used for magnetic measuremert [ 1 f7] 
because it can easily provide various macroscopic quantities such as the current 
density weight center [72], the shape of the last magnetic surface [I I819 and the 
triangularity [117]. Especially, it is proved that the m-number spectrum of the 
internal multipolar moments contains information necessary for separation of 5, 
and ji,Q in the electromagnetic measurement. 

(3) Cor~forma! mapping method, Goedbloed [46] developed a conbrmai 

mapping method for solving the Grad-Shafranov equation, where two steps of con- 
formal mappings from the original r-plane to the computational rr-plane are con- 
sidered: (I) the Moebius transformation ( z -+ i) of the unit disk 1.~ < 1 onto the 
unit disk 151 < i such that 2 = 6 (~5: position of the magnetic axis) corresponds to 
c = 0; and (II) the mapping (i -+ W) of a simply-connected region enclosed by the 
curve ;(FP) (r,: curve of the plasma surface in the ~-plane) onto the u-nit disk: 
/W 6 1. The resultant mapping w(;(z)) is also a conformal mapping which trans- 
forms the plasma boundary I-, in the z-plane onto a unit circle Ilt’/ = I while 
shifting the magnetic axis x = 6 to the origin of the u,-plane (Fig. 4.7). The 
Grad-Shafranov equation is solved in the ,r-plane by using Fourier representations. 
The advantage obtained by such a transformation is that the number of Fourier 
harmonics needed for accurate representation of an equilibrium can be reduced 
substantially by the Moebius transformation and that the inversion of the Eaplace 
operator can be performed analytically in the cylindrical coordinates in the 111,~piane. 
As a natural consequence of the above mappings this method is suitable for solving 
the MWD equilibrium problems with a fixed boundary condition where t 
non of the magnetic axis. 6, is substituted for the approximate poioidal beta, 8,. as 
an input parmeter characterizing the equilibrium. 

The explicit form of the Moebius transform is 

v - b 

“=I-&. 

The existence of the mapping (II) is guaranteed by the classical 

FIG. 4.7. Conformal mapping used for the eq:;i?ibrium caicclation 146 j. 
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theorem [119]. Such a mapping is expressed by a nonlinear integral equation of a 
type of Hilbert transform as shown in the following. We consider an analytic func- 
tion, [ = g(nl), which transforms a unit disk, IM’I < 1, to a simply-connected region 
in the i-plane. By the Cauchy’s integral theorem, the value of g(,v) for IV = re” 
(Y< 1) is given by the integral of g(nT) on In’1 = 1 as 

(4.63) 

The boundary value of g can be expressed by 

g(e”‘) = gR(t’) + ig,(t’), (4.64) 

where g, and g, are periodic functions. By taking the limit, I’ -+ 1, with Y < 1, we 
obtain an integral relation between g, and g, (Hilbert transformation) as 

finjr)=+‘~;+ot (y) g,(t’)dt’, (4.65) 

g,Jt’) dt’, 

where P denotes Cauchy’s principal value, and A = 0 if g(0) = 0. Due to its convolu- 
tion form, Eq. (4.65) can be solved easily with respect to g[(t) by using a fast 
Hilbert transform (FHT) [46] based on the fast Fourier transform technique. Next, 
the shape of the boundary in the i-plane ([ = pe”) is specified by the equation, 

P =f(Q (4.67) 

and the following function is introduced to make correspondence between the 
angular variables, t and 8, 

F( iv) = ln( [( itl)/n,), (4.68) 

which takes the values at the boundary, ~IV = 1, 

F(d’) = ln(f( 8( t)) + i( 0( t) - t). (4.69) 

The real and imaginary parts of the right-hand side of Eq. (4.69) satisfy the relation 
expressed by the Hilbert transformation. From this relation one can derive a non- 
linear integral equation for the unknown function 6(t) as 

ln(f(e(t)))= -&Pjlnicot(q) (Q(t’)-t’)dt’, 
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and this equation is solved iteratively by using F T. In this way the complete 
mapping comprised of the two steps of the mappings is derived as 

where H’ = se” and the ~~5~~‘s (real for up-down symmetric cases) are obtained fro:m 
the Fourier expansion of the numerically obtained boundary function, 

After some cumbersome handling of equations, the Grad-Shafranov equation in the 
n,-plane is derived as 

d:““Y’=AH(Y), (d..y??. ) 

where 

I-( Y) and II( !P) are the profile functions of clG.‘&? and dP/dY> respectively. defined 
as 

g= -Al-(Y), 
df’ 
dyY= -.1BIT( Y), (4.37 1 

and the other notations are the same as those in 2.7. Boundary conditions are 
imposed on Y’ as 

to ensure the location of the magnetic axis at x = 5, ~7 = 0. In Eqs. (4.73) and (4.75 ), 
A is an eigenvalue and B is determined corresponding to the value of 5. Equation 
(4.73) is solved iteratively as 
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where the inversion of the operator AT’ is easily carried out by the integration over 
the s-direction in terms of Fourier representation of Y((s, t) and H( !P) as 

Y(s, f) =; Yo(s, + f YJS) cosimt), (4.81) 
m = I 

H(Y) =; H,(s) + f H,,,(s) cos(mt). 
m=l 

with the boundary conditions, 

ul,,(l) = 2~,,,,0, 
and the regularity conditions, 

(4.82) 

(4.83) 

Y,:,,(O) = 0, 32 = 0, 
ds 

for nz = 0, 1, 2, . . . . From the regularity conditions for the m = 0 and the m = 1 
components, equations determining B(n) and A(rz) are derived, respectively, as 

s 
I (1 -s2) H’,“‘(s) ds=O. 

0 
(4.85) 

A(n) = 2 j; 1; jI Mb”‘(d) ds’} ds. (4.86) 

This scheme is advantageous for its high efficiency because it uses only the FFT in 
the main part of the solver. Moreover, this scheme can provide not only the flux 
function Y(u(s, t) but also the first- and second-order derivatives, needed in the 
stability analysis in terms of the harmonics. However, because of the previously 
described reason it seems rather difficult to apply this method to a free boundary 
problem of the first type described in 3.1. 

4.2. Inverse Equilibrium Solver 

Theoretical analysis of MHD stability requires equilibrium with a very high 
accuracy and an equilibrium solution based on magnetic flux coordinates is often 
necessary. Sometimes, this is also the case for a transport analysis code such as a 
1.5D tokamak code (see 5.4). For these purposes several inverse equilibrium solvers 
in which the real space coordinates (r, z, 4) are directly obtained as functions of the 
magnetic flux functions, have been developed. Moreover, in solving the MHD 
equilibrium by the inverse solver the poloidal angular coordinate is, inevitably, 
prescribed and a coordinate system is directly obtained by specifying an 
appropriate Jacobian. Solution methods so far developed are divided into two 
classes, i.e., iterative methods and expansion methods. The former is subdivided 
into the iterative metric method and the direct solution of the inverse equilibrium 
equation. 
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42.1 Iterntke Reconstruction of Metiks 

The iterative methods are essentially based on iterative reconstruction of metrics 
defined on the magnetic flux coordinates. The most intuitive one of this type is 
employed in the SELENE equilibrium code by Takeda and Tsunematsu [@I. This 
code is developed on the basis of the iterative reconstruction of FEM meshes which 
are constructed so that two of edges of a rectanguiar FEM mesh always lie 
on magnetic surfaces (Fig. 4.3). On this FEM mesh structure the usual 
Grad-Shafranov equation is solved directly as a nonlinear eigenvalue problem and 
new mesh structure is reconstructed. This process is repeated until convergence 
is attained under some prescribed condition. The FEM formulation of ;he 
Grad-Shafranov equation is described in the previous section. The overall iteration 
procedure is summarized in Fig. 3.8. An inverse equilibrium is obtained by an outer 
iteration where the internal iteration procedures are repeated until the resulting $ 
values coincide with the values of the mesh points. Figure 4.9 shows that the eigen- 
value L converges quadratically with respect to the mesh numbers. 

FIG. 4.8. Flov. diagram of the iterative metric method employed for the SEEENE code j&g: 
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FIG. 4.9. An example of convergence of the eigenvalue 1 of the inverse equilibrium code SELENE 
[48]. q(O) is the safety factor at the magnetic axis. 

The inverse equilibrium solver by DeLucia et al. [49] is somewhat similar to the 
above method but in this solver the procedure to iteratively determine metrics is 
clearly realized without the help of the numerical process. First, the Jacobian 2 is 
given as 

j-=(v*xve.v+Ll + 
( > 

‘PI $“. 
0 

(4.87) 

By using this Jacobian the inverse equilibrium equation is derived as 

d*;5($) = ryvr-* Vx(l/b)] = r’f -‘[o#~), + (&h@qs] =f($, r), (4.88) 

f=r(r~zs-rfjZ$/)=p + 
( > 

“P> (4.89) 
0 

h** = (ri + zi)/f, (4.90) 

h*’ = - (rerti + 7 -sz*))/f* (4.91) 

where rti = &/a$, ro = arjae, zIL = azla*, zg = &/la& and x is the poloidal magnetic 
flux function, whereas I) is a coordinate constructed as a different label of the 
magnetic flux function. The above equations are solved with respect to 1 for fixed 
metrics and this process is repeated. The effectiveness of the inverse equilibrium 
solver was demonstrated by analyzing the ideal internal and free surface mode 
instabilities of equilibria generated by the above code as shown in Fig. 4.10 and 
confirming a high /? region of stability to internal modes and demonstrating high 
/? saturation of the latter modes. 

4.2.2. Direct Solution of Inwrse Equilibrium Equation 

Both of the above methods solve the Grad-Shafranov equation and obtain the 
poloidal magnetic flux as the solution during the iteration process. However, in the 
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FG. 4.40. i\n example of the equilibrium solutions by the irerative metric method of DeLucia ?! ni. 
[49]: (a) and ib) are current contours for b=O.O20 and p =0.225. respectively: kc) ar,d id; ax n::x 
surfaces for b = 0.20 and fi = 0.225, respectively; ie) midplane currcn: profiles. 
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methods by Hicks et al. [Sl] and Vabishchevich et al. [47] real space coordinates 
Y and z are determined directly as dependent variables of the partial differential 
equations by iterating the metrics of the system. They started from the usual 
Grad-Shafranov equation and transformed the unknown variables from the 
magnetic flux function $ and the poloidal angle 0 to the real space coordinates z 
and Z. 

In the equilibrium code AXE Hicks et al. adopt nonorthogonal coordinate 
system and assume a Jacobian of the form, 

f = Jo(P) T/P, (4.92) 

where they used p as the magnetic surface label instead of the magnetic flux $. 
According to Hicks et al. the nonlinear equations to be solved are obtained from 
the Jacobian and the Grad-Shafranov equation as 

J,(p)r’= P ( ar 1 a? 1 aY Bz ------- 
app se pa8ap > 

(4.93) 

and 

1 a+ ar -_--- 
p2af32ap 

I> 
+ r2p’ + FF’ - A*tjvac = 0, (4.94) 

where the quantities F, p, and p are taken as functions on a grid pj. Several addi- 
tional constraints are considered as boundary conditions at the plasma surface, 
plasma axis, and wall. The safety factor 4 and pressure function p are given as 

4(P)’ - Jch?bd~P) (r/-?),=o (4.95) 

P(ti) = Po($Mo)‘. (4.96) 

The numerical solution of the above equations is obtained by using the Fourier 
transform as 

dP> 0) = c r,(Pj) cos(r~z~), 
m 

(4.97) 

z(p, 19) = 2 z,(pj) sin(m0). 
1?1 

(4.98) 
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Linearized Jacobian Eqoaiion 

I Obtain 5 Kroa I;, I 

FIG. 4.11. Flow diagram of the AXE code [ji] 

The AXE code is constructed on the basis of the above equations as shown in 
the over-ail flowchart of Fig. 4.11, in which the Jacobian equation is solved by 
modifying the I’ and z coordinates as 

It was concluded that the convergence of the Jacobian equation is extremely rapid 
when a sufficient number of 112 components is included (Fig. 4.12). The computa 
tional results were compared with a usual Cartesian equilibrium code STEQ 
[I261 and it was concluded that the Fourier amplitudes are essentially the same for 
PI1 < 7. 

On the other hand, Vabishchevich et al. assume an orthogonality condition., 
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FIG. 4.12. Convergence of the equilibrium calculation by the AXE code with respect to the number 
of Fourier components 1511. 

On the basis of this condition they introduce a new variable /i($, 0) as 

(4.101) 

These equations are transformed into the following two equations determining r 
and z as functions of $ and 8 if the variable p is determined from the 
Grad-Shafranov equation as shown in the following third equation 

and 

$= -P [($)‘+($)‘I J,($, r). 

(4.102) 

(4.103) 

(4.104) 

Vabishchevich et al. show several examples of the calculation on fixed/free 
boundary, cylindrical/toroidal equilibria but details of the numerical procedure 
are not clearly described in their paper. In the case of this orthogonal coordinate 
system, stability analyses often suffer from the singularity at the magnetic axis and 
the method seems rather difficult to apply directly to the stability analyses. 

4.2.3. Methods of Expansion in Poloidal Angle 

The inverse equilibrium solver based on the expansion method has been exten- 
sively studied in relation to three-dimensional MHD equilibria. This method 
originated from the analytical equilibrium solution [121, 1221 in the early stage of 
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tokamak research. A practical inverse equilibrium code (~~~~~§~ based on a 
variational moment method in a general form was developed by Lao and co- 
workers [SO]. First, the authors define a Lagrangian L, which corresponds to the 
integrand of the Lagrangian in the description of the FEM formalism (Eq. (4.38 5 I, 
X5 

where 

The Grad-Shafranov equation is reproduced from the Euler equation of this 
Lagrangian L as 

SL 8 l3L a integral Q is 
represented as 

It should be noted that the value of the integral is invariant under a transformatron 
of the coordinates. The variation of Q with respect to Y’ and 3 under the boundary 
condition of Grjboundary) = 0 or 6ziboundary) = 0 yields 

and 
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where 
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By specifying a particular representation for the poloidal angle 8 as 

r(p, 6) = 2 r,(p) cos n& 
PZ=O 

z(p, 0) = 5 z,(p) sin rz0. 
12 = 0 

Euler equations describing r,,(p) and z,,(p) are derived as 

WJ) =Q n = 0, 1, . . . . n,, 

M, = ““0 cos ne, 

AI,, = rrg sin no, 

where the angle bracket is defined as 

(A) = 1;’ 2 A. 

. . . 

(4.113) 

(4.114) 

(4.115) 

, n,, 

(4.116) 

(4.117) 

(4.118) 

(4.119) 

(4.120) 

In this way the Fourier expansion coefficients Y, and z, are determined by moments 
of the inverse equilibrium equation with respect to the weighting functions M, and 
M:. The above moment equations are second-order ordinary differential equations 
and each equation is supplemented by two boundary conditions. The second-order 
equations are rewritten as a system of first order differential equations of the form 

II’ = f(.x, II), (4.121) 

where II is a vector comprised of the Fourier amplitudes. To demonstrate the 
applicability of the moment method, comparisons of the results of this code with 
those of the fixed boundary two-dimensional code RSTEQ [120] were carried out 
for the ISX-B and INTOR/FER tokamaks. Figure 4.13 shows the flux contours and 
various profiles of the ISX-B tokamak, where the solid curves are obtained by the 
moment method and the broken ones are obtained by the RSTEQ code. In all cases 
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FIG. 4.13. An example of the flux surface contours (a) of the 8X-B tokamak by the inverse equi- 
librium code VMOMS (solid lines) and the conventional two-dimensional code RSTEQ (broken lines). 
Profiles of various equilibrium quantities of the ISX-B tokamak are shown in (b) [SO]. 

there was close agreement between the results by the usual code and the inverse 
equilibrium code. 

The FCT equilibrium is often desirable for theoretical analysis because the 
pressure and safety factor profiles can be prescribed before the calculation and the 
high beta equilibrium is obtained easily. However, as boundary condition for 
the FCT equilibrium cannot be assigned explicitly in the case of the full 
Grad-Shafranov equation, it is rather difficult to develop an inverse solver for the 
FCT equilibrium. To cope with this problem Tokuda et al. [i23] developed an 
inverse solver SELENEHB for the FCT equilibrium on the basis of the moment 
method incorporated with a high beta tokamak ordering. The high beta tokamak 
ordering equation (Eq. (2.81)) is adopted as the equilibrium equation. The FCT 
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condition for the equation is derived explicitly as follows. First, the equation 
defining the safety factor 4 and the Jacobian f are expanded as 

q=;[l--RP(YI)+ ...I & , 
t -> 

(4.122) 

g=g(o’+g&(l)y (4.123) 

where s = -j?.? and 

(4.124) 

By assuming up-down symmetry the real space coordinates x and y are expressed 
by magnetic flux coordinates s and f3 as 

x=A+spcostl+s 1 X,cosnztl, (4.125) 
m = 2 

y = SK sin 8 + s 1 Y, sin 1710. (4.126) 
ill = 2 

The Grad-Shafranov equation is transformed to 

+$zg [$(Vs.VB)]. (4.127) 
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FIG. 4.14. Derivatives of the ellipticity IC’ and the toroidal shift 4’ of a low beta tokamak plasma 
(/I/E= 10m2). Points are obtained by the inverse equilibrium solver and solid lines are obtained by an 
analytical expression [ 1231. 
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FIG. 4.15 Derivatives of the ellipticity ti’ and the toroidai shift A’ of a higher betz tokamak plasmas 
(B/E =O.Z for (a), ~!‘E=O.J for (b)). Solid lines were obtained by the inverse equilibrium solver and the 
broken lines were obtained by an approximate analytical expression [IX]. 

By truncating the series at PH = M and averaging each term with a weight of CCB ~?aq 
(>TZ = 1, 2, 3, . . . . 2M) the following 2M ordinary differential equations are obtained: 

With the constraining condition derived from the FCT condition and expansion; of 
the Jacobian, 

a system of t,2M+ 1) ordinary differential equations with unknown variables (A, p, 
i;:, X2, Y,, ...r X,, Y.M) is obtained and by solving it an inverse equihbrium is 
obtained. Comparison with the analytical calculation of a Sow beta circular plasma 
showed excellent agreement for the ellipticity and the shift of the magnetic surfaces 
(Fig. 4.14). As for higher beta plasmas, the comparison was made with. an 
approximate analytical result and also good agreement was attained (Fig. 4.15 ). 

4.3. NumetYcal Mapping to F!ux Coordinares 

Linear MHD stability codes such as PEST [I241 and ERATB [i25] are, 
usually, written by using a flux coordinate system and the various metric quantirics 
necessary for the stability analyses are given at the mesh points defined on. the flux 
coordinates. Therefore, if the equilibrium solution is given by a conventional ma! 
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space solver the solution should be mapped from the real space coordinates to the 
flux coordinates and finally the real space coordinates r and z should be expressed 
in terms of the flux coordinates $ and x. 

The angular coordinate x in the flux coordinate system is defined by a line 
integral on a contour of $ as 

(4.130) 

The metric quantities which should be calculated at the ($, x j mesh points are 
r(ti, x), z($, x), i?r/ih,b, Jr/ax, q(t,b), dq/d+ and the non-orthogonality parameter 
&=Vl) .Vx/(V$(’ [125]. 

A crude mapping method is to draw a set of contours by linear interpolation of 
$ values given at the (r, z) mesh points and determine the angular coordinate x by 
calculating the line integral along the approximate contours. Afterwards various 
metric quantities are obtained by linear interpolation and numerical differentiation. 
In this method the following problems are encountered: (1) it is very difficult to 
obtain contour lines near the magnetic axis; (2) in general the error of the finite 
differentiation with respect to $ and x becomes large even if the accuracy of the 
calculation of $(r, zj is high. For the stability calculation by PEST, Grimm et al. 
employed auxiliary quasi-cylindrical coordinates p and 8 defined as 

r=R,+pcosN, (4.131) 

z = p sin t? (4.132) 

In terms of the auxiliary angular coordinate 8 the real space coordinates r and z, 
and the straight field line angular coordinate x are expressed as 

fl,= -pg($costJ+$sinB)-‘, (4.133) 

(4.134) 

(4.135) 

where it should be noted that the definition of 0 and f are different from the original 
paper by Grimm et al. The above differential equations are integrated by the 
Newton-Cotes predictor-corrector algorithm and the values of r, z, and so on are 
determined accurately on the mesh points in the flux coordinate system, where the 
flux function cc/ is interpolated by the cubic spline method. In this case the non- 
orthogonality parameter is expressed as 

(4.136) 
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On the other hand, in order to resolve the problems appearing in the ERATO 
stability analysis Tokuda et al. 11261 employed a two- imensional spline interpola- 
tion [I273 as the mapping method, which satisfies the following two conditions: 
(1) the value of the metric quantities are determined uniquely only by the set of the 
data (ri, zis rji) given on the (r, z) meshes and they are independent of the (I,$. 2’: 
meshes; (2) the derivatives with respect to I,!I are determined uniquely even on the 
($, xj meshes. The contour $(Y, z) = -$I~ is calculated from the differential equations, 

where ~8 is a line element of a contour. To avoid a partial differentiation some 
quantities are represented by line integrals along the contours as 

2345678 

(4.138) 

FIG. Li.16. Examples of relative errors of quantities dy.‘& (a) and PR:S$ (5) calculated by the 
two-dimensional spline mapping (lower curve) and a linear intespoiatior. mapping {upper curve) jl20]. 
The solid line in the subfigure (a) shows the analytical value of dq.‘d$. 
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The derivatives of &/c?$ and &/13x are given as 

al 1 a$ qr a* -=- 
aI) ,Vtil’ ar+F B, dz’ 

dr v a* -= -- -. 
ax F & 

(4.141) 

(4.142) 

Test calculations of the spline mapping method were carried out for a model 
equilibrium, 

,2 2 
$(r,z)=27l r2+;?- . 

( 1 
(4.143) 

The error level of the numerical calculation of the metrics was obtained and com- 
pared with the analytically obtained metric quantities. Some examples are given in 
Fig. 4.16, which shows that extreme improvement is attained in comparison with a 
mapping method based on the linear interpolation. 

4.4. Numerical Technique for Vector Processor 

Because the MHD equilibrium calculation is a basis of various analyses of the 
fusion plasma and it is required to calculate equilibria many times, one of the most 
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FIG. 4.17. Degradation of vector-processing eflkiency at a short vector length region, observed in 
the calculation by the DCR code [129]. L is the minimum vector length plus 1. 
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important requirements on numerical codes is high speed calculation. For this 
purpose, sometimes, we need improvement of the numerical algorithms to attain 
efficient calculation on a vector processor type super-computer. 

When we solve an elliptic partial differential equation such as the Grad 
Shafranov equation, algorithms using the cyclic reduction method and the fast 
Fourier transform (FFT) are very advantageous from the viewpoint of the total 
number of numerical operations as described in the previous section. These 
algorithms are highly sophisticated to match computations on a scalar computer 
and usually one cannot attain a high efficiency on a vector computer if one slm 
converts a code to a vector-oriented one. Matsuura et nl. [I281 investigated his 
probiem in detail and implemented vector-oriented cyclic reduction methods into 
the MHD equilibrium code SELENE40. 

As for the DCR. the length of the main vectorizable DO loop decreases, e.g., 
from 64 to 32, 16, 8, 4 during the reduction process. When the vector iength is 
shorter than a certain critical value, the vector operation, in general. takes a longer 
tjme than a scalar operation. Therefore, one had better leave a shorter DO loop as 
a scalar DO loop. An example of the critical length of a DO loop is shown in 
Fig. 4.17 [129]. In the case of the FACR two approaches are considered. One is to 
employ a vectorized FFT algorithm and the other is to utilize the parallelism found 

1 10 100 1 

Multiplicity 

30 

FIG. 4.15. Comparison of vector efficiencies of thz multiple FFT ad the singie FFT [17’;]. 
Performance ratio of the vectonzed multi-FFT with respect to the scaiar FFT is showy as a function 
3f the multiplicity. 
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TABLE II 

Performance Ratio of a Vector Processor for Equilibrium Solvers by FACR and DCR Algorithms 

Algorithm for Scalar mode 
equilibrium solver (Fortran-H) in ms 

DCR method 1668 
FACR method 1119 

Vector mode 
(AP-Fortran) in ms 

916 
286 

Performance ratio 
(vector/scalar) 

1.82 
3.91 

in the calling sequence of the FFT subroutine. In the FACR procedure with 
NR x NZ meshes, the FFT subroutine is called NR times on each Z mesh line. This 
FFT loop with the length of NR is easily vectorized and high vector performance 
is attained as shown in Fig. 4.18 [ 1291. A detailed description of the vector-parallel 
algorithm of the FACR method is given in Ref. [130]. The vector performance for 
both the DCR and FACR is summarized in Table II. 

As for the future trend of high speed calculation, parallel processors will 
inevitably used for MHD equilibrium calculation. In this case iterative solution 
methods are more advantageous than direct methods which are widely used 
for equilibrium calculation at present. In particular, the MGM described in 
Section 4.1.1 seems promising as an effective algorithm for parallel processors. 

5. MORE GENERAL EQUILIBRIUM MODELS 

In the descriptions of the previous sections we assumed implicitly that the plasma 
is in a static equilibrium with isotropic pressure. This assumption is not valid in a 
plasma subject to intense auxiliary heating. For example, neutral beam injection 
(NBI) heating causes plasma rotation (plasma flow) and strongly anisotropic 
pressure distribution. In order to apply the equilibrium solver to such a problem, 
therefore, it is necessary to extend the model to cover equilibria with flows and/or 
anisotropic pressure. Another important subject connected with MHD equilibria of 
a plasma with additional equations is the analysis of equilibria with non-ohmically 
driven currents. In the previous equilibrium code discussion on the current sources 
were not treated explicitly and, instead, we had to specify profiles of quantities 
which are difficult to determine experimentally, such as the toroidal field function 
and the safety factor. However, it is necessary to treat explicitly the current sources 
when we study MHD equilibria especially for a tokamak with non-ohmic current. 
For investigation of these problems it is no longer sufticient to stay in the 
framework of the MHD model and we must take into account transport processes 
based on the kinetic theory. In connection with this issue and equilibrium solver 
consistent with the transport process and an equilibrium evolution solver are con- 
sidered. 
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In this subsection we consider the MHD equilibrium equation with flow for an 
axisymmetric plasma on the basis of the incompressible ideal single fluid MHD 
model [ 1311. The basic equations of the system are 

div(pV) =O, 

pv.vv= -Vp+Jx 

rot(V x B) = 0, 

rot B = J, 

v.vs=o, 

where S is the entropy. First, we derive two algebraic relations among the quan 
tities characterizing the flow equilibrium. From the Maxwell-Ohm’s law for an 
ideal fluid (Eq. (5.3)), it is shown that the electric field V x B is expressed by an 
electrostatic potential !P’,, which is a surface quantity (a function of oniy a 
magnetic surface label), as 

VxB= -VY,, i5.6) 

vY,=R(*)Vl/J. i <,7 I .a J 

It is easily seen from Eqs. (2.5) and (5.6) that the veiocity vector lies on a magnetic 
surface and it is decomposed into the parallel and toroidal flow velocities as 

where 
u,=r’Q(~/). (5.9 j 

As the system is axisymmetric and the plasma is incompressible it is shown that the 
function @,t4 is also a surface quantity. When @>%,($I) = 0 the flow is purely toroidal; 
otherwise the flow has a poloidal component given by 

Therefore, the poloidal component of the flow divided by the poioidai magnetic 
field is the function @.kf itself. Equation (5.10) means that the poloidal variation ot 
the poloidal (and parallel) flow is derived from the poloidal variation of the 
magnetic field. By using the above equation (Eq. (5.8)), the equation for entropy 
conservation (Eq. (5.5)) is rewritten as 
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which means that the entropy is also a surface quantity provided that QM is not 
identically zero. On the other hand, there is no constraint on the entropy for a 
purely toroidal flow (QM 3 0); instead of the above equation (Eq. (5.11)) we use the 
isothermal condition on each magnetic surface in this case as 

T= T($). (5.12) 

Then, we obtain the following magnetic differential equations (Bernoulli-type 
equations) from the scalar product of the equation of motion (Eq. (5.2)) with 
Vb and B, respectively, as 

B.V 5 4 &‘+1’ 
2P2 y-1 

S(l)) p”-’ =o. 1 (5.14) 

In the above equations the expressions for the pressure are assumed for the general 
case and the purely toroidal case, respectively, as 

p = S(G) P:‘, (5.15) 

p = PT 
M’ 

where M is the particle mass of the fluid. Integrals, I($) and H( $), of Eqs. (5.13) 
and (5.14) are obtained as 

(5.18) 

From Eq. (5.17) it is known that the toroidal field function is no longer a surface 
quantity except for the case of a purely toroidal flow. One can see, from Eq. (5.18) 
that the density, i.e., the pressure, is not an arbitrarily given surface quantity but 
a quantity obtained by solving Eq. (5.18) simultaneously with the Grad-Shafranov 
equation. Next. the equation for the general flow equilibrium which corresponds to 
the Grad-Shafranov equation of the static equilibrium is obtained as 

dH 1 dS 
+pT&-p-l @ &=O. 

(5.19 j 



For the case of a purely toroidal flow Eq. (5.18 ) is reduced to a much simp&er 
form as 

and the pressure can be expressed explicitly by the surface quantities s? an 

where 

and 

Then, the equation for a purely toroidal flow corresponding to the Grad-Shafranov 
equation is derived from Eq. (5.19) as 

where the pressure gradient is obtained from Eq. (5.21) as 

To solve Eq. (5.24) one should specify the functions F, H,, and 0,. Numerical 
codes for this kind of equilibria were developed by Semanzato t’t al. [44j, znd 
Kerner and Jandl [45] for a fixed boundary plasma and by Kerner and Tokuda 
[l-12] for a semi-fixed boundary plasma. In the former two codes the FEM 
approach was adopted and in the latter the cyclic reduction method was adopted. 
An example of the numerical results by the latter code is shown in Fig. 5.1. 

When one analyzes a more general flow equiiibrium with both toroidai and 
the poloidal flows one must solve the partial differential equation (Eq. (5.i9 1) 
simultaneously with the associated equations (Eqs. (5.17) and (5.18)) by specify@ 
the five functions, Q, @,&<, S, Z, and H. Also with the solution Ij/, the toroidal fieid 
function F and the density p which are not surface quantities but functions of r. ci;. 
and jV$i’ are determined. The difticulty of this problem arises from the fact that 
the equilibrium equation (Eq. (5.19)) is not always an elliptic partial differenzral 
equation [133, 1341. This type of differential equation is classified by at invesri- 
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FIG. 5.1. An example of equilibria Gith toroidal flow: (a) flow velocity; (b) safety factor; (c) total 
pressure; (d) poloidal flux function are shown. It should be noted that the flux surface (e) and the 
constant pressure surface do not coincide with each other [132]. 

gation of the second-order derivatives of the equation, (1 -A2+c@z) tir,.+ 
24,tir$,; + (1 -A2 + df, ICI,,, where A = I@,,,1 /p is the Alfvtn Mach number of 
the poloidal flow with respect to the poloidal field and CI = (2A2/p) Sp/8((V$12). 
From this analysis [133, 1341, it is shown that the equation is elliptic in the 
intervals 

O<A2<j3,, A;<A’<l, 1 <A’ <A,;, (5.26) 
where 

p,=x 
p+B2’ 

(5.27) 
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When the ellipticity of the partial differential equation is violated, shock waves may 
cause a change of the topology of the flux surfaces [135] and the equilibrium 
problem may become complicated. From the viewpoint of the application, the soiu- 
tion of the equilibrium with general flow may explain the experimentally observed 
asymmetry of the density profile, which is usually too large to be explained by he 
effect of the toroidal flow. In general, however, the neoclassical transport theory 
shows that parallel viscous force associated with magnetic field modulation in a 
tokamak is apt to damp the poloidal flow within an ion-ion collision time scale 
[‘t36-1381, and there is still a question of whether the steady state with polsidal 
flow can exist or not. 

5,2. Anisotropic Equilibria 

The basic anisotropic equilibrium equation is given as 

J x I3 = div P. ( 5.28 1 

On the basis of guiding center plasma theory [139] the tensor pressure P is 
expressed only by the parallel pressure p,, and the perpendicular pressure pL as 

P=p,,nOn+p,(O-n@nj. ( 5.29 ) 

where n= B,,B, 0 is the unit tensor, and @ denotes the tensor product. From the 
above equations we can derive the set of equations which governs the anisotropic 
equilibrium [140, 1411, 

A”,)= -!%! -iz,*-i,,,.,,. 
CT ~3) B G* d$ G 

where 

‘4s seen in Eq. (5.3 1) crF is a surface quantity instead of the toroidal field function 
F for the case of isotropic equilibrium. Moreover, although in the isotropic case 
both the current (J) and the magnetic field (I%) vectors lie on a magnetic surface 
and the natural coordinate system [lo] is constructed so that both t 
trajectories are straight lines, in the anisotropic case the vector no longer lies on 
a magnetic surface. Instead, a quantity, 

K = rot(oBj. [S.3 ‘4) 
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lies on the magnetic surface and the natural coordinate system is constructed so 
that the J and K trajectories are straight in this coordinate system [ 1421. There are 
additional constraining conditions on the parallel and perpendicular pressures, 
which come from the stability conditions against the mirror and firehose 
instabilities [ 1401 as 

(5.35) 

(5.36) 

The conditions are consistent with the condition that the equilibrium equation is 
elliptic, and these are satisfied for a usual tokamak plasma. 

Equation (5.32) can be solved numerically by the same methods applied to the 
solution of the scalar pressure equilibrium. First, the parallel pressure profile is 
specified in the two-dimensional space ($, B), and then the perpendicular pressure 
is determined by using Eq. (5.30). One of the most important applications of the 
anisotropic equilibrium solver is the analysis of equilibrium and/or stability of 
intensely heated plasmas by, for example, neutral beam injection. In this case the 
parallel beam pressure is calculated from the beam distribution function ~&IA, E, $) 
(cl: the magnetic moment, E: particle energy), which is the solution of the Fokker- 
Planck equation. Cooper et al. [143] use an analytical solution where the’pitch- 
angle scattering operator has been ignored. Figure 5.2 shows an example of the 
numerical results of the anisotropic equilibria calculated by Cooper et al. [143]. 
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FIG. 5.2. Parallel (a) and perpendicular (b) pressure profiles overlayed on flux surfaces (broken 
lines) for a broad-profile tensor pressure equilibrium induced by parallel beam injection 11431. 
Background pressure profile (coarse broken line), parallel beam pressure profile (fine broken line). and 
perpendicular beam pressure profile (solid line) are also shown in (c). 
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Salberta e: ai. [ 1441 employ the solution, f,Jp, E, ;i? ), of a radial one-dimensionat 
version of the Fokker-Planck equation where the radial convection term, as well 9s 
pitch-angle scattering operator, are retained. 

The previous sections are devoted to the description of numerical solutions of the 
Grad-Shafranov equation by-specifying the functions p and F [or p and ~1. When 
we use the surface-averaged parallel current (J B), instead of F or 4, we can treat 
explicitly the sources of currents confining a plasma. Within the framework of the 
neoclassical transport theory the surface-averaged parallel currem ;145j is 
expressed by 

(J.B)= (J.B),+ (J. $37) 

FIG. 5.3. Flow diagram of an equilibrium code with specitied current SOUTCS [l!Z] 
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FIG. 5.4. An example of equilibria with broad pressure profile which is consistent with the neoclassi- 
cal transport process, where I, = 140k.4 [ 1521. (a) Contours of poloidal flux function 4, where 
tjaxis= -2.24~ 10m2 weber. (b) Toroidal current on the midplane. Total current, ohmic current, 
Phirsch-Schliiter current. and bootstrap current are shown by solid line, dotted line, dashed line, and 
dotted dashed line, respectively. (c) Safety factor for neoclassical equilibrium (solid line) and classical 
equilibrium (dotted line). 
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where ( . B ) B are ohmic current and bootstrap current given by 

(J.B).=a..(E. (5.3) 

>s stands for the non-ohmically driven current. The neoclassical trans- 
port coefficients, oIvC, L;L, L\,, L&, and L$ are given in neoclassical transport 
theory review papers [69, 1461. The equation for the toroida! fieid function ,c is 
related to the parallel current as 

ClF 

F&=- 
(5.40) 

By solving the above equation and the GraddShafranov equation simultaneously 
one can obtain an MHD equilibrium self-consistently within the neoclassical trans- 
port theory and the employed theory of the non-ohmicaily driven current [!47]. 
This set of differential equations is solved iteratively. Figure 5.3 shows an exampie 
of the iterative processes, where the non-ohmically driven current is not considered 
and the probiem is formulated as a nonlinear eigenvalue problem with the one turn 
voltage P’, in a quasi-steady state as the eigenvalue, 

(E.B)=& B,. ;,5,4E) 
0 

Ehst of a/. [148] obtained self-consistent equilibria with the current driven by fast 
wave excitation. En this calculation (J B) s is given by a ray-tracing calculation for 
a fast wave. Okano et al. [ 1493 and Tani et 01. [I503 computed equiiibria 
sustained by beam driven current. Tokuda et a/. [ 1511 eveloped a numerical code 
SELENENEO on the basis of the iteration scheme shown in Fig. 5.3 and computed 
equilibria for a non-circular tokamak with ohmic current and bootstrap c-urrent 
calculated self-consistently. where the neoclassical coefficients derived by a sinpie 
rational approximation given by Eq. (4.75) of Ref. [146] were employed (‘see also 
[I%]). The neoclassical effects on the electric conductivity and the deformation of 

iasma current profile due to the bootstrap curreni in a high beta tokamak are 
clearly demonstrated by this calculation (Fig. 5.4). 

Calculation of the evolution of equilibria in a tokamak plasma plays an impor- 
tant role from the viewpoint of the transport property. Transport analyses are 
indispensable in the studies of the confinement properties of the tokamak plasma 
and various one-dimensional (ID) transport codes. called “tokamak codes” have 
been developed [i5331.58]. With the ev-olution of the equilibrium, however, the 
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transport property, especially the energy balance in the plasma, changes, which is 
not taken into account in a usual 1D tokamak code. Therefore, the transport 
process of the tokamak plasma should be analyzed in a two-dimensional (2D) 
space by taking into account the change of field geometry [159]. In other words, 
the resulting transport such as the diffusion is a non-local process which depends 
on the global nature of the boundary value problem. Moreover, although a 
tokamak equilibrium is usually determined by assigning profiles of plasma pressure 
and magnetic field, these profiles should not be given a priori, but they are 
determined from the transport process and the initial profile. For some applications 
the conventional procedure of equilibrium solution may be satisfactory but, for 
other applications, self-consistent determination of the current profile is required. In 
the previous subsection (5.3) we described the time independent method of self- 
consistent determination of equilibrium with transport process. Another method for 
the self-consistent determination is solving the equilibrium evolution on the resistive 
time scale and a 1.5D tokamak transport code is favorably used for this purpose. 

An equilibrium evolution solver (a 1SD tokamak transport code) is, essentially, 
composed of a two-dimensional equilibrium solver and a solver of the one-dimen- 
sional transport equations averaged on magnetic surfaces; this was called an alter- 
nating dimensional method by Grad. What should be remarked is that there are no 
equations which advance in time the metric quantities included in the above trans- 
port equations. To resolve this issue the metric quantities are transferred to the 
transport code from the equilibrium code and the information on the current profile 
necessary for the equilibrium calculation is fed back from the transport solver 
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FIG. 5.5. Overall flow diagram of an equilibrium evolution code. 
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(Fig. 5.5). This scheme of equilibrium evolution solver was first proposed by Grad 
and Hogan [16@] and afterward various numerical codes were developed by many 
authors [161&166]. In this kind of solver time scale for change of the plasma shape 
and its topology is comparable with the transport time scale and it is much slower 
than the Alfven transit time. Within this time scale plasma flows are generated so 
that the force balance equation, Vp - J x B = 0, is always satisfied [161]. This con- 
dition constrains the “grid velocities” of the flux coordinates, which follow a linear 
integro-differential equation [ 167, 1681. in tokamaks, however, the toroidai flux, @ 
is virtually unchanging and one can eliminate the grid velocities by adopting !he 
toroidal flux as the independent (grid) variable, by which a “conservation equation” 
for the safety factor 4 is derived [166, 1671. This model is suitable for practical 
applications. The FCT algorithm is, therefore, inevitably employed for solving the 
Grad-Shafranov equation in this model. As described later Jardin adopted another 
approach in the TSC code [169] to treat the plasma motion, in which arti::icial 
forces are introduced and the equilibrium equation is converted to an equation of 
motion. 

As for the transport process of the equilibrium evolution code, the density and 
energy equations are given from the flux surface average of the conservation 
equations for particles and energy. Closure relations are needed to determine the 
relations among the particle/energy fluxes and the radial derivatives of density; 
temperature as well as the electric field. Though the neoclassical theory gil/es a 
complete set of equations, in an actual plasma, anomalous transport processes seem 
to dominate and the behavior of the tokamak plasma cannot be recovered by only 
including neoclassical process. At present, it is necessary to adopt a semi-empirical 
set of transport equations for theoretical understanding of an actual tokamak 
plasma on the basis of computation. As there is no reliable semi-empirical transport 

el applicable to comprehensive understanding of ail tokamaks, we only 
describe a simple but a typical transport model where the particle (heat) flux of 
species is derived only from its density (temperature) gradient (diagonal :nodel) 
and the plasma obeys a classical Ohm’s law [166]. 

As mentioned above, the “radial” coordinate is defined from the toroidal 
magnetic flux as 

p=JZjZg (i.42) 

where B, is a typical (for example, externally applied) toroidal field. Ther equations 
of density and energy of the plasma with ion charge number Zi are 
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3 ~“-“(Kic~~)-~(DC,Ti~) 
2( vy3.‘2 at ap 

DC, 8ppi Sn, 
= ----+QQdV’+(S3) V’, 

II, dp ap 

Q,=$$ (T,-T,), 

I e 

(5.45) 

(5.46) 

(5.47) 

where 

N, = 11, V’, 0, = p,( v’)5/3, ai=pi(v’j5;3, V’ = dV/dp. I1 j = ne/Zi, (5.48) 

c, = ~‘VP12), c2 = V’((IW/fY), c,= V((l/r)‘>, (5.49) 

and D is the electron diffusion coefficient, K, and Kj are the electron and ion ther- 
mal conductivities; (S, ) stands for the particle source, and (S, ) and (S, ) stand 
for electron and ion heat sources, respectively. To solve Eqs. (5.43), (5.44), and 
(5.45) the values of IZ,, T,, and Ti must be specified. The constraint that the total 
toroidal current I, is given is the appropriate boundary condition for Eq. (5.46). 

In the 1.5D code of the above type, concerns are more in the transport process 
than in the equilibrium itself and the equilibrium calculation is rather simplified as 
restricted to the fixed boundary problem. On the other hand, when one uses the 
l.5D tokamak code for an engineering purpose the plasma motion subject to the 
transport process and the electrical property of the system is the main object to be 
analyzed. In this case it is necessary to solve a free boundary equilibrium with the 
electric circuit and realistically positioned external conductors. The TSC code is 
suitable for this kind of applications. This code analyzed the time evolution of the 
free boundary equilibrium of the axisymmetric toroidal plasma subject to the 
resistive diffusion, the additional heating, and the electric current in the set of the 
poloidal magnetic field coils. The basic equations of the code are the equation of 
the 2D motion, the equations of the poloidal and the toroidal magnetic fluxes, the 
surface-averaged entropy equations for the ions and the electrons, and the surface- 
averaged equation of the plasma density. The essential feature of the code is that 
the equation of motion is derived from the equilibrium condition and the artificial 
viscous forces as 

F,, = -vI [V’m - V(V . m)] - v2V(V. m j, (5.51) 



MHD EQUILIBRIUM OF TOKAMAK PLASMA a i 

where is the plasma momentum, ~1, and vI are the viscosities. in the above equa- 
tion t convective term is neglected. By enhancing the viscosity terms artificiali:,:, 
plasma is always made in approximate equilibrium -which mitigate 
:ional difficulty, due to the large difference of time scales of the MH 
and diffusion process. The free boundary solution is obtained by replacing the 
vacuum with the low temperature, null pressure gradient plasma. 

Various kinds of applications of the equilibrium evolution solvers have been 
reported. Examples of the former equilibrium evolution calculation subject ii. r .-. 

realistic transport processes are found in the paper b:/ Hogan [163], where the 
author presents several calculations concerning the accessibility of high beLa 
tokamak states. Figure 5.6 shows the change of tbe Mercier and msistive In!er- 
change criteria of the PDX tokamak due to equilibrium evoloution according to 
different transport models [ 1631. Miller [l&I] applied the equilibrium evoimicn 
code to an analysis of shape control of the doublet tokamak. The doubiet shape is 
determmed by the plasma current profile and the current flowing in the field 
shaping coils. Therefore, as the plasma current evolves, the field shapmg .coiis 

!b) 

FIG. 5.6. Evolution of Mercier and resistive interchange criteria for a PDX model calculation 1163 j : 
(a) Mercier (solid line) and resistive interchange (dotted line) for three :ransport models. The criteria 
are evaluated at IJ = O&6,,, = $*. (b) Evolution of the ballooning figure-of-merit for the three traxwrt .’ 
models of $*. (c) Evolution of P($*) for the three transport models. 
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must be actively programmed to preserve a desired plasma shape. It was found 
possible to control the doublet shape by appropriately adjusting the current in the 
field shaping coils. As for the TSC code, applications in the field of plasma 
control such as the simulations of plasma shaping in the PBX tokamak [ 1701 and 
relaxation process of the spheromac [ 1711 were reported. Applications of this kind 
of codes are found in the experimental analysis codes or reactor designing codes, 
where they incorporate two-dimensional phenomena in a real space, such as the 
neutral particle diffusion or phenomena in a velocity space. 

5.5. Comments on Three-Dimensional Equilibriwn Solvers 

Though the tokamak plasma is basically axisymmetric, in some cases three- 
dimensional (3D) equilibrium analysis is necessary. In this section we summarize 
briefly the purposes and the methods of the 3D equilibrium solvers for the analyses 
of the fusion plasma. 

The purposes of the 3D equilibrium analyses are considerably different between 
the non-axisymmetric system such as stellarators [ 1721 and the axisymmetric 
system as tokamaks. For the research of the former system the 3D equilibrium 
analysis is essential. The determination of the finite beta equilibrium itself is the 
main purpose of the 3D equilibrium calculation of the system. By this calculation 
the maximum beta value governed by the condition for the existence of the 
equilibrium with well-defined magnetic surfaces is determined and the formation 
processes of magnetic islands and/or stochastic regions appearing with increasing 
beta value are analyzed. On the other hand, in the research of the tokamak, analyses 
are made concerning the three dimensionality attributed to the imperfection of the 
system and to the symmetry-breaking process by a nonlinear evolution of an 
instability. An example of the imperfection is the ripple magnetic field arising from 
the discreteness of the toroidal magnetic field coils. At present the main concern on 
this issue is the degradation of the alpha-particle confinement [ 1731, and the effect 
of the non-axisymmetry to the neoclassical transport is also studied [174]. Up to 
now the non-axisymmetric state appearing in a tokamak is mainly analyzed from 
the viewpoint of the nonlinear evolution of instabilities [175], but the non- 
axisymmetric equilibrium itself is also studied by some authors [ 1761. 

Methods for the solution of 3D equilibrium are divided into two classes, i.e., the 
variational approach and the non-variational approach. Numerical codes based on 
the variational approach are further subdivided depending on whether existence of 
the 3D magnetic surfaces are assumed or not. In the codes by Chodura and 
Schliiter [ 1771, Bauer, Betancourt, and Garabedian [178], and Hender et al. 
[179] belong to the category where the existence of the magnetic surfaces is not 
assumed a priori. On the other hand, in the 3D inverse equilibrium solvers based 
on the moment method [18&183] the positions of the magnetic surfaces are 
Fourier-analyzed in both the toroidal and the poloidal directions, which is possible 
only when the existence of the magnetic surfaces is assumed a priori. Equilibrium 
solvers based on both the above methods are used for design studies of the non- 
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axisymmetric tori such as ATF [ 1791 but the latter method is by far advantageous 
from the viewpoint of the cost performance [ 1841. 

The non-variational approach is also subdivided into two groups, i.e., the direct 
iteration method and the averaging method. In the direct iteration code the M 
equilibrium equations (Eqs. (2: 1 )-( 2.3 )) are directly solved by using an iterative 
procedure [lg5]. This method was originated by Spitzer [186] and on the basis 01 
the idea a 3D equilibrium code was developed by Greenside e: a!. [l&7. 1883. This 
method is effective for computing accurately an equilibrium with magnetic islands 
and/or stochastic regions [ 1891, and for self-consistent calculation of t 
equilibrium with ripple magnetic field [ 1901. The averaging method is an 
approximate solution method used for the analysis of the stellarator eq~i~i~r~~~rn 
and stability, where the magnetic field is composed of a strong axisymmetric fie!d 
and a weak one varing rapidly along the magnetic field lines. To derive the 
averaged MHD equation the original equations are expanded on the assumprioc 
that the inverse aspect ratio and the nonaxisymmetric quantities are smah 
(stellarator expansion) [191-1931. Sometimes the assumption OF the small i_n_verse 
aspect ratio is not used [194200] then the resultant averaged equilibrium equation 
becomes similar to the axisymmetric Grad-Shafranov eqiration and the iraricus 
numerical methods described in this article can be used effectively. Good agreemen: 
of results of the averaging method with those of full 3D caicdation is obtained 
[196-2041. 

6. APPLICATIONS 

6.1. Beta Limit Optimization 

As well as the studies of the numerical procedure of the equilibrium solution and 
the development of the equilibrium solvers a lot of effort was put on the develop- 
ment of optimization methods necessary from the viewpoint of the fusion reactor 
development programs. Though the early tokamaks were circular cross-sectional. 
later many theoretical and experimental studies were carried out for non-circular 
cross-sectional tokamaks in order to attain high plasma current density necessary 
for good energy confinement and intense ohmic heating under the condition of 
reasonably high safety factor qL( [2]. Solving the Grad-Shafranov equation numer~- 
tally and calculating the beta limit from the Mercier criterion Peng el ni. [92] 
showed that a D-shaped tokamak is advantageous to attain a stable high beta equi- 
librium. Afterward investigation of optimized high beta equiiibrium stable w!th 
respect to the ideal MHD modes such as the ballooning mode and the kind mode 
were carried out [202205]. In the optimization studies two different equilibrium 
groups were investigated; one was a group of strongly-shaped tokamaks such as a 
bean-shaped tokamak [206-2091, crescent-shaped tokamak [210], and an eliip- 
soidally shaped tokamak [211], and the other was a group of the low-aspect-ratio 
rokamaks [92, 212-2141 which are advantageous of their compactness [3LZ1~ Xi 
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these studies are based on the calculation of the beta limit determined by the ideal 
MHD stability and the results are summarized in terms of the Troyon factor [205], 
g,= /?/([/&I,). On the other hand, the equilibrium optimization aiming at improve- 
ment of the plasma confinement is also pursued. In this case suppression of the 
trapped particle instability is the key issue [215] and the equilibrium was 
optimized so that the $ derivative of the second adiabatic invariant J= $ v,, dl or 
the velocity-space average value of the invariant over the trapped particles is 
negative or as low as possible [216,217] (see also [218] for the related topics). 

As a typical example of the application of the high resolution equilibrium calcula- 
tion in this subsection we present a beta limit optimization with respect to the 
high-n (n: toroidal mode number) ballooning mode. Strictly speaking the beta limit 
optimization should be carried out with respect to all possible modes of instabilities 
but the high-n ballooning mode is often the most stringent mode [219] which 
imposes a beta limit on a tokamak plasma. This mode can be analyzed on each 
magnetic surface independently, which makes the stability calculation extremely 
easy in comparison with other instabilities. 

The equation for the high-/z ballooning mode instability was derived by Connor 
et al. [220] as 

f f(Y) 2, +$ h(y)g=o'k(y)g, ( J (6.1) 

where g is the slowly varying part of the instability amplitude. of the so-called 
ballooning representation with respect to the extended poloidal angle 3’ defined in 
an infinite region ( - w < y < co ). The other quantities are expressed as 

where 

a V$.V -3- 
ah IW12’ 

The boundary condition for g(y) is 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

g(y= “J)=g(y= - cG)=O. (6.7) 
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Calculation of 

Ballooning Mode 

Fir,. 6.1. Flowchart of calculation of the beta limi: optimization. 

y letting a2 = 0 the critical pressure gradient (rlpi@),, is obtained as the efgen- 
value, dp/d$, sf Eq. (6.1). The numerical procedure of the beta limit optimization 
is a combination of the FCT equilibrium calculation and the stability calculation as 
shown in Fig. 6.1, where the pressure distribution is determined by the above criti- 
cal pressure gradient analysis. In the actual calculation the ballooning equation 
(Eq. (6.1)) is solved in a bounded domain of JJ[O, 2nM] for an up-down-symmetric 
case by assuming that the profile of the safety factor is fixed during the optimization 
process, where IV is the parameter determining the approximate boundary of the 
integration. The marginal equation (Eq. (6.1) with CD’ = 0) is numerically solved by 
using the Runge-Kutta method or the matrix method with the boundary condi- 
tions: 

g(O) = finite and g(27rNj = 0. (&a > 

An example of the beta limit optimization with respect to the high-n ballooning 
mode is shown in Fig. 6.2 [221, 2221. 

Since the behavior of g( )I) in Eq. (6.1) is determined in the limit of large y by the 
Mercier criterion [223], this criterion always predicts stability if the ballooning 
criterion does. Elowever, it is often convenient to evaluate it, since this requires on11 
an averaging of equilibrium quantities along magnetis field lines, rather than 
solving a differential equation along the line, as 
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FIG. 6.2. Example of calculation of the beta limit optimization. Subtigures (a), (b), and (c) are for 
thr case with moderate shear, whereas subfigures (d), (e), and (f) are for the case with high shear at the 
plasma surface. 

where 

(6.10) 

(6.11) 

‘? (6.12) 

(6.13) 

(6.14) 

(6.15) 

When the local interchange instability is the limiting instability, the critical pressure 
is obtained from the Mercier criterion [221] as 

c, + Jc; + 4c, c, 
2c, ’ 

(6.16) 
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where 

6.2. Engineering Applications 

MKD equilibrium calc.ulations give basic data which are necessary for designing 
a tokamak deviee. The confinement properties of a tokamak plasma is determined 
on the basis of the MHD equilibrium. Therefore, the MHD equilibrium calcula- 
tions of a tokamak plasma are directly related to engineering applications as GXA! 
as other applications. More specifically, the determination of a desired externai 
magnetic field configuration and coil system, and analyses of the positionai 
instability properties are two major engineering applications of MHD eyuilib:ium 
calculations. There are also other engineering applications as analyses of shape con- 
trol by using the equilibrium evolution code incorporated with the external circuit 
equation j164] mentioned in the previous section. This problem is a rather com- 
plicated one from the engineering viewpoint which includes the MHD equihbrium. 
transport process in the plasma, eddy current problem in the external conductors: 
and electrical circuit outside plasma. In the following we descri.be the forme; two 
applications. 

The design of a external magnetic field configuration is formulated as follcws. 
The external conlining magnetic field is determined from the equilibrium solution 
by separating the confining field and the self-field from the composixe magnetic 
field. The simplest way to carry out this process is to calculate the self-heid by 
integrating the plasma current density over the whole plasma C:DSS section and sub- 
tracting the self-field from the composite field. However, this process is very cum- 
bersome and impractical for the usual equilibrium calculation. To cope with this 
difficulty Shafranov and Zakharov [S7] proposed the virtual casing principle in 
which the surface integral of the plasma current in the previous calculation is 
replaced by a line integral along a magnetic surface. To apply t 
principle one assumes an equilibrium configuration surrounded by a closed super- 
conducting sheath S coinciding a magnetic surface. Outside this sheath the 
magnetic field is zero, because the magnetic field due to the plasma current is r:m- 
pletely canceiled by the surface current i induced in the super-conductor, 

1 
i=- B,xn, 

PO 

is the magnetic field of the equilibrium configuration at the surface S and 
n is the normal unit vector perpendicular to the surface. Thus the magnetic field due 
to the current in the virtual casing coincides with the conf”ming field inside tne 
casing and outside the casing it coincides with the magnetic field due to the plasma 
c~urrent with opposite direction. Therefore, by using the virtuai casing principle one 
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can calculate the external confining magnetic field inside the virtual casing [72] as: 
(1) determine a fixed boundary equilibrium by assigning the plasma boundary 
shape; (2) calculate the magnetic field tangential to the boundary at the inner 
surface of the virtual casing; (3) calculate the surface current density in the virtual 
casing from Eq. (6.18); (4) calculate the magnetic field B,(S) due to the above 
surface current. Calculation of the current distribution in external field coils is an 
inverse problem from the magnetic field. This problem is reduced to a first type 
Fredholm integral equation as 

&, = + iI b,(s; I) dl= B,(s), (6.19) 
I 

where 

b,(s; I) = b(.s; I). [e, x n(s)], (6.20) 

and I, i,(l), and b,(s; I) are the position along an arbitrarily chosen contour sur- 
rounding the virtual casing, current density at I, and the magnetic field at s by unit 
current at I, respectively. The above integral equation is an ill-posed problem in the 
sense of Hadamard, and Zakharov used the regularization method of Tikhonov 
[224] which minimizes the functional 

(6.21) 

ia ,b, ICI 0) 

FIG. 6.3. Dependence of the approximation of the external coil currents on the cutoff Fourier 
number K [4]: (a) K= 1; (b) K=3; (c)K=5; (d) K=7. 
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FIG. 6.4. Effect of using too many Fourier components foi the sternal current distribution 1.71 
u&g: (a) K= 5. or 1.b) K= 11. gives practically the same approximation to the prescrilxd plasrx~ 
scrface. 

where ic, and k, are positive functions, x is the regularization parameter. Modrfica- 
tions of the above method have been proposed by many authors. asically the 
problem is made numerically tractable by dropping the rcq~ireme~t that the act!~aj 
plasma boundary should coincide exactly with the prescribed one, while posing 
restrictions on the location and current in the external conductors. Lackner [71 
represented the external current on the closed surface by a Fourier series truncated 
at a given order K to enforce a controllable degree of smoothness and expressed 
the totat field at the nth cycle as 

where $,, i is the field produced by the ith Fourier component of the external 
current The K+ : Fourier coefficients xi’s were then determined at each jteration 
to minimize the deviation of the flux function (Fig. 6.3). Too many Fourier com- 
ponents result in a strongly oscillating external current distribution (Fig. 6.3 j. 
Instead of optimizing the current distribution in external coil systems Toi and 
Takeda [X5] proposed optimization of the positions of external coils carrying 
prescribed currents. In this method the position of a coil is restri 
curve and is represented by a single parameter such as a poloi 
curve and the objective function made of the square of the difference of the desired 
magnetic fields is minimized with respect to the poloidal amgles by us 
appropriate nonlinear programming algorithm. Due to the discreteness of t 
currents unnecessary strong oscillation is suppressed and the solution is regularized 
as shown in Fig. 6.5. 
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FIG. 6.5. Example of the external coil design by using the nonlinear optimization algorithm 12251. 
The subfigure (a) shows a constraining circle with radius of 1.25 m, on which the coils with currents f1 
move during the optimization process. The coils are inhibited to enter the shaded angular regions. The 
subtigure (b) shows the map of the magnetic field lines due to the optimized coil configuration. The 
subfigures (cj, (d), and (e) show the deviation of the realized magnetic field from the desired one, the 
vertical magnetic field on the median plane, and the realized n-index. 

The positional instability of a tokamak is primarily related to the gradient of the 
external magnetic field and usually only a few parameters are sufficient to identify 
the stability condition for this instability. Representative models used for analyses 
of this instability are (1) rigid model, (2) rigid displacement model, and (3) general 
linearized ideal MHD model. In the rigid model a toroidal plasma is represented 
by a current carrying rigid conductor and the instability is analyzed electrodynami- 



MHD EQUILIBRIUM OF TOKAMAK PLASMA 91 

tally. where plasma deformation is neglected. The stability condition [97] is 
expressed by the gradient of the magnetic field (17~: tz-index) for a circular cross-sec- 
tional tokamak as 

where 

By a slightly more complicated formula the stability condition for an eIlipticai 
cross-sectional tokamak is also obtained on the basis of this model 12261. Tn the 

08 0.6 04 0.2 0 -02 -04 
8 K ,,,,m,, 

1 I ’ 
13 1 / 1 I 

FIG. 6.6. Stability diagram for the positional instability of the Solov’ei. equilibrium on the ‘xsis of 
various models [X28]. Broken line and dotted-broken line ir. (a) show the decay index n,=CJ.B and 

n, = 1.5, respectively. Broken lines in the subfigure (b) are the stability boucdary calculated by rhe &id 
displacement model. Solid lines in both the subfigures show the stability boundaries calculated by rhe 
general MHD model. 



92 TAKEDA AND TOKUDA 

rigid displacement model, uniform plasma displacement over the whole plasma 
cross section is assumed and the variational principle is applied for this uniform dis- 
placement [227]. In the general MHD model no such assumption is introduced 
to the plasma displacement and the instability is analyzed by using a general 
linezarized ideal MHD code such as ERATO [ 1251 or PEST [ 1241. Kumagai et 
al. [228] analyzed the positional instability for the Solov’ev equilibrium [20] on 
the basis of the above three models. They found that the stability conditions 
obtained for these three models are rather different from each other, especially when 
the non-circularity is large and/or the aspect ratio is small, as shown in Fig. 6.6. By 
using the rigid model the stability condition is easily calculated because it is not 
necessary to solve an MHD equilibrium. It is, however, concluded that the general 
MHD model is indispensable to analyze the positional instability in a present day 
large tokamak with highly shaped cross section and/or small aspect ratio. The 
importance of calculation of the MHD equilibrium is remarkable when one 
analyzes the positional instability of a tokamak with a magnetic limiter or divertor. 
When a tokamak has a poloidal divertor on the median plane as in the case of the 
JT-60 tokamak [229], the external magnetic field changes its sign at the stagnation 
point (X-point) of the separatrix magnetic surface. Consequently, the n-index varies 
from plus infinity to minus infinity at the X- point (Fig. 6.7), which makes the 
widely used rigid model useless for identification of the stability condition of this 

I.6 2.0 2.2 24 2.6 26 3.0 3.2 34 3.6 3.6 40 4.2 4.4 4.6 48 5.0 

20 20 30 30 40 
R (ml R (ml 

FIG. 6.7. Spatial variation of the n-index in a plasma w-ith a separatrix magnetic surface [229]. The 
external coil currents are adjusted to fix the X-point at the prescribed position. 
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system and the general hnearized ideal MI-f model is indispensable, For a 
tokamak equilibrium where the plasma surface coincides with the separat;ix 
magnetic surface we must be very careful to calculate metric quantities which 
diverge at the X-point. In the calculation of Ref. [229] a magnetic surface separated 
inwards by &!I,,,, from the separatrix was chosen as the plasma surface. ~1;:: 
difference of the magnetic flux &jscP is defined as 

hLIp = l$sur-$5ep/ =I3 I$scp-il/axil* 
q’ 6 7 c \ <.J --I; 

where d of 0.001 is employed as a typical value of separation. To ensure high 
accuracy, fine meshes with N, = 512 and NV = 256 were chosen and mesh accumuk- 
tion near the plasma surface was adopted in the stability calcu?ation.. The main 
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6~. 6.8. Stability window of a positional instability (the lower subiigure) ir? a plasma ;vith a 
separatrix magnetic surface [X9]. The upper subfigures sio~ the vrrtica!!j-unstable. stable. a2d 
hcri;ontaDy-unstable equilibria from the left to the righr. 
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FIG. 6.9. Plasma displacement due to the positional instability [229]. Subfigures (a) and (b) show 
the vertical positional instability, and subfigures (c) and (d) show the horizontal positional instability. 
Subfigures (a) and (c) and subfigures (b) and (d) are the limiter case and the divertor case, respectively. 

results of the analyses of the positional instability in the JT-60 plasma are sum- 
marized as follows: (1) Even in the case of a tokamak plasma with an X-point, 
positional stability is assured in a wide range of the n-index, 0.25 < 12~ < 1.2 
(Fig. 6.8). This result, however, contradicts the result of the rigid displacement 
model which gives wider stability window [230]. (2) The vertical displacement is 
well described as a rotation around the X-point and the horizontal displacement is 
described as a radial flow into the X-point (Fig. 6.9). Both flow patterns differ con- 
siderably from those corresponding to the rigid model or rigid displacement model. 
(3) The current distribution affects the stability considerably. If the current profile 
is peaked the stability window widens to the high ni side. All of these results 
indicate that the MHD equilibrium calculation is very important even for the 
calculation of global instabilities such as the positional instability. 

6.3. Experimental Arza&ses 

In a tokamak experiment basic information on the MHD equilibrium of the 
plasma is obtained by measurement of electromagnetic signal. Needless to say, 
detailed equilbrium can be obtained by using additional information by other 
diagnostics but we can reconstruct a fairly satisfactory equilibrium configuration of 
a tokamak plasma only by measurement of the electromagnetic signal from the 
plasma. In most tokamak devices magnetic probes and flux loops are installed as 
a system of the electromagnetic measurement. The usual magnetic probes are small 
coils to sense the local magnetic field, and a long densely wound coil surrounding 
the minor circumference of the plasma, called a Rogowski coil, is used to measure 
the toroidal plasma current. Sometimes, a set of partial Rogowski coils which do 
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not cover the complete minor circumference is used as in the case of the Doublet-III 
tokamak [231]. A flux loop is a loop wound along t e major circumference ol the 
toroidal plasma that senses the change of the poloidal magnetic flux t) inside the 
flux loop. A flux loop surrounding the plasma minor cross section is called a 
diamagnetic loop and it senses the change of toroidal flux, which is related to the 
plasma pressure. In this section we use a set of data from the Rogowski coib; 
magnetic probes, and flux loops as input data for the equilibrium analyses. 

Christiansen and Taylor [232] have shown that the current distribution in an 
axisymmetric toroidal discharge can. in principle, be completely determined from 
purely geometric information about the shape of the magnetic surfaces. Determina- 
tion of current distribution based on this procedure was carried out by Christiansen 
et cri. [233] by using the X-ray tomography technique [234]. The electromagneric 
signals are only obtained outside the plasma that do not give information on the 
shape of the inner magnetic surfaces and it is interesting to know to what extem :X 
can determint: the plasma equilibrium configuration by using such a limited set of 

information In the following we describe a method to determine the equilibrium, 
especially the fiP. lj, shape, and position, from the input data of the magaetic 2eK 
and he magnetic flux at several points outside the plasma. This kind of analyses is 
indispensable for experiments in a large tokamak and various numerical codes have 
been developed by many authors [235-240]. Generally this procedure is divided 
into two steps; i.e.: the first step determines the plasma position amI cross-sect;onal 
shape, and then a more detailed equilibrium is obtained by solving the Grad 
Shafranov equation as a semi-fixed boundary problem by- using the data of :hc 
plasma shape obtained in the first step. In the second step an assumption is made 
that the current distribution is given by a simple function with a few pa:amerers. 

Identificatiotl 

Plasma Boundary 

FiG. 5.lG. Overall flow diagram to determine an equilibrium from a set of experimental dsra 
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The overall procedure to determine the equilibrium is shown in Fig. 6.10. We 
describe the two steps in more detail: 

(1) The result of this step is not only used as the input data for the second 
step but also used independently for the on-line control of the plasma position 
and a fast and simple calculation method is required for this step. The toroidal 
multipole method of Zakharov is one of the direct methods used to determine the 
position and shape of the plasma [7 2, 1171. In this method the moments of the 
current are defined as 

u,~ = s x,,,(r, z) Jd(r, z) dr dz, (6.26) 

where the xm’s are solutions of the differential equation, 

v f vx,, = 0. (6.27) 

The surface integrals over the cross section of the plasma are reduced to line 
integrals surrounding the plasma cross section, and the multipole moments are 
obtained from the electromagnetic signals measured outside the plasma. Thus the 
plasma position, ellipticity, and triangularity are derived from the first, second, and 
third moments, ui , Us, and u3, respectively. This is an elegant method but in 
an actual situation applicability of this method is limited due to the hardware 
restriction. 

On the other hand, the practical method of this step, widely used for the 
experimental analyses of large tokamaks, is based on the least square matching of 
the measured magnetic field and the calculated magnetic field which is produced by 
filament currents or surface currents located inside the plasma. It is not possible to 
determine completely the plasma current distribution from any external measure- 
ment but it is possible to determine the multipole moments u,,‘s and we can expand 
the flux 9, due to the plasma current as 

It should be remarked, however, that current distribution which realize a particular 
set of moments, zl,, . . . . u,,[, cannot be determined uniquely. This fact enables us to 
fit the outside magnetic field by varying the currents in the filaments or surface at 
fixed positions. In the filament current method [237-2391, typically, six filament 
currents are located inside the plasma region and magnetic field fitting is carried 
out for six parameters, i.e., the currents in the six filaments. The location of the 
plasma current filaments are arbitrarily chosen because the calculated boundary 
position is rather insensitive to the positions of the filaments unless they are too 
close to the boundary or they are located too closely to each other. The least square 
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matching of the magnetic fields is carried out by minimizing the object function, ZZ 
defined as 

where hi’s arc measured magnetic fields and b;s are the calculated fields expressed 
as 

where i,c and Pp are the currents flowing in the external conductors and fiiamenr 
currents in the plasma region. Qji is the response matrix expressed in terms of the 
complete elliptic integrals. There are several variations of this method, especial!] 
concerning the treatment of external conductors and constraining conditions stich 
as a fixed plasma current. When the tokamak device has an iron core and;or the 
effects of eddy current in the external conductors play an important role. the system 
should be analyzed very carefully. In this case currents in the external conductors 
should be treated as unknown variables and the surface current model is more 
suitable for the equilibrium analysis. 

After the plasma position and the poloidal field strength on the plasma surface 
are determined we can calculate the surface integrals S, and S; (Eqs. (2.62) and 
(2.63)). Then, the current beta pJ and the internal inductance /i can be evaluated 
using the measurement of the diamagnetic flux. In ar. actual experiment, however. 
the current beta determined from Eq. (2.60) does not coincide with the current beta 
from Eq. (2.61 j because of the unavoidable experimental error. The beia value 
calculated from the former current beta is called the diamagnetic beta fidia and that 
from the latter is called MHD beta PM”” conventionally. In the tokamak research 
these beta values, as well as the kinetic beta fikin, evaluated from the measuremeE[ 
of the density, the temperature, and so on, are used in experimental data analyses 
[235,240]. Generalization of the definition of the above betas to rhe anisotropic 
pressure equilibrium was given by Lao et ai. [2X]. dn order to determine &e 
MHD beta by Eq. (2.61) it is necessary to evaluate the internal inductance 1; ind:- 

ently from the calculation of S, and S,. One expedient is use of a EtGng f~- 
by which the internal inductance is expressed as a function of the parameters 

specifying the current profile and the plasma shape, current beta, and so on [235:. 
Another method is to calculate the equilibrium by parametrizing the plasma c~re-~“,: 
profile, which is described minutely in the following, 

(2) On the basis of the information obtained fro.m the first step one cao 
obtai:: more detailed information of the equilibrium by solving the Grad-Shafrenov 
eqluation in the second step. Numerical codes for this kind of analyses are also 
developed by many authors [231,23!?]. As the plasma boundary is airea derer- 
mined by the first step calculation, in this step one solves the Grad- Ir;an:3v 
equation as a fixed boundary problem or a semi-fixed boundary value problem. Tile 
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plasma current distribution is expressed by several parameters and the parameters 
are determined through a nonlinear optimization procedure of the object function 
composed of the sum of squares of the magnetic field differences. The number of 
parameters is usually chosen as one or two. A key issue of this kind of problem is 
whether it can properly determine the poloidal beta p, and the internal inductance 
Ii. In the analyses of the Doublet III tokamak [231] and JT-60 [239] the current 
density is expressed as 

J&Y 3)=Jo [ 
P,o ~+iw$,) F] g&J,, 

0 

(6.31) 

g&J) = (1 - IJy. (6.32) 

The parameters CI and 1: correspond to the parameters with clearer physical 
meanings, qaxis and fi. Therefore, the free parameters of this system are (lb, flP, qaxis, 
li). In an actual situation one uses the plasma current measured by the Rogowski 
coil, and on the assumption that qaxis = 1, which is considered to be good for the 
case with sawtooth oscillations, determines the parameters p, and li. In this 
analysis the Grad-Shafranov equation should be solved many times, even to deter- 
mine one set of unknown parameters in the optimization procedure, and this series 
of calculations must be repeated many times to obtain the time-resolved experimen- 
tal results. 

Luxon and Brown claimed that, in plasmas with significant non-circularity, the 
internal inductance can be determined independently of the poloidal beta by this 
method [231]. According to them the ability to separate the internal inductance 
from the poloidal beta is dependent on non-circularity, where for the circular case 
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FIG. 6.11. 
of deviation 
space. 

Separation of fl, and fj by sufficiently accurate equilibrium calculation [239]. The square 
between the observed and calculated magnetic field .Z (contours) is minimized in the BP-I, 



they cannot be separated. On the other hand, Tsuji et al. analyzed the experimental 
data of IT-60, a nearly circular cross-sectional tokamak [2391, and they con.cluded 
that separation of fl, and Ii is possible if the resolution of the equilibrium calcula- 
tion is high enough. In their calculation the outboard and inboard radii of the 
plasma (R,,, and Ri,), determined by the filament current approximation, are used. 
to define the plasma position and the SELENE40 code based on the IX% 
algorithm is used to solve the Grad-Shafranov equation. The values of 8, and li are 
determined by nonlinear optimization of Z in the fi, - /, space by applying the 
Coggins method [241]. The contours of 3 are almost parallel lines in the /I, - !, 
plane, which means that /I, and lj degenerate in the case of the ciscu!ar cross- 
sectional tokamak (Fig. 6.11). The detailed structure of the contours shows. 
however, that the contours in the vicinity of the minimum are of extremely 
elongated elliptical shape and a single minimum exists. It was also conciucied rha: 
even if there is an experimental error separation of fl, and ii is possible by solving 
the Grad-Shafranov equation with very high resolution. 

Another method for separation of fl, and I, is to solve the equilibrium ~i:h 
toroidal multipolar expansions [43]. This method utilizes the fact that the multi- 
Folar spectrum carries the complete information on the M characteristics of Ihe 
plasma. The multipolar spectrum at the plasma surface is calculated for a fixed 
boundary plasma and the dependence of the multipolar comgonen!s on t?e 
poloidal beta value is obtained for a parameter of fiP + /,/2. Separation of ,Q, is 
rather difficult for a circular cross-sectional tokamak as previously described. And 
because of existence of unavoidable randam error there is a thres,hold value for the 
parameter 8, + li!2, under which separation is impossible. 

Recently reconstruction of the current distribution from the externa!ly imeasured 
magnetic signals on the basis of the solution methods of the mathematical iav.erae 
problem 1242, 2431 is being studied extensively by several authors [244, 3461. 

7. SUb0d~R-f AND 

A lot of equilibrium solvers for a tokamak plasma have been developed and used 
for various objectives such as the MHD stability analysis, the experimental 
analysis, and the design of new devices. From the viewpoint of the numerical algo- 
rithm to solve the Grad-Shafranov equation with a free boundary condition the 
equilibrium solvers based on the cyclic reduction methods with the Green’s function 
formula seem most efficient. As one can utilize a large memory space in a modern 
computer, equilibrium calculation with extremely high resolution becomes possible 
by using this algorithm. Inverse equilibrium solvers have been developed to attain 
a high resolution calculation but due to the above fact, recently, such an approach 
is not necessarily an indispensable one. A variety of solution methods of the Grad- 
Shafranov equation is, however, still necessary because there is room for choosing 
the best algorithm for different applications. Especially, it is quite probable that 
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some iterative algorithms such as the multi-grid method will be the most effective 
with the advancement of parallel processing computers. 

In the field of theoretical analysis of the tokamak plasma the MHD equilibrium 
analysis was successfully used for the beta limit calculation concerning the beta 
limit scaling, the shape optimization, identification of the second stability region of 
the ballooning instability, and so on. An early stage tokamak with a circular cross 
section was a low beta device, at least experimentally. But in recent tokamaks 
higher beta value as more than 5 % is attainable, even experimentally. For calcula- 
tion of the higher beta equilibrium the FCT algorithm plays an important role. As 
for the physics implication of the MHD equilibrium, self-consistent determination 
of the plasma current including neoclassical current effects becomes important and 
efforts are paid to the studies of equilibrium with non-ohmic current source and 
equilibrium evolution by using a 1.5D tokamak transport code. This is because 
current sustainment by NBI/RF-wave seems indispensable for future tokamaks and 
current drive techniques are also effective for direct control of the current profile 
of a confined plasma, which may be used for the stabilization of unstable MHD 
modes. Study of anisotropic tokamak equilibria with or without toroidal/poloidal 
flows is another important subject for such tokamak plasmas. The effects of c( par- 
ticles should be considered for analyses of fusion plasmas. Numerical codes for such 
problems have been developed but a lot of problems remain to be analyzed. 
Another important problem which has not been studied extensively up to now is 
the search for an equilibrium optimized with respect to the confinement property of 
the tokamak plasma. The transport process in the tokamak is governed by 
anomalous ones due to electrostatic and/or electromagnetic microinstabilities. 
These instabilities may be suppressed by the control of the macroscopic quantities 
such as the shaping of the plasma cross section, the profiles of the density, tem- 
perature, and electric current. This possibility was pointed out by several authors 
but details still remain to be analyzed [247]. With the progress of tokamak 
experiments large efforts are directed to develop techniques for reconstruction of the 
MHD equilibrium from the experimentally measured electromagnetic data. This 
kind of techniques will become more and more important in the future reactor-scale 
devices where various kinds of measurement of the plasma behavior may be suf- 
fered from the irradiation of fusion neutrons. 

Throughout this review we assumed that a tokamak has complete axisymmetry. 
We presented only a brief comment on the three-dimensional MHD equilibrium. 
However, a real tokamak device is not completely axisymmetric for various 
reasons, such as the existence of the rippling magnetic field. Even if a tokamak is 
completely axisymmetric, the symmetry of the MHD equilibrium may be broken by 
the occurrence of instabilities and equilibrium bifurcation with lower symmetry may 
be observed. Such a steady state with less symmetry may, sometimes, have a strong 
influence on the property of plasma confinement in a tokamak. For this kind of 
problems three-dimensional equilibrium/steady-state analysis is essential, for which 
the three-dimensional MHD equilibrium theory developed in stellarator research 
may be effectively used. 
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